IT-Security Cryptography and Secure Communications

Exercise: Introduction to Number Theory

Lecturer: Prof. Dr. Michael Eichberg
Version: 2023-10-19

1. Compute the result of $5^{9} \bmod 7$ by hand. Don't use a calculator!

One Possible Solution

```
\(\left(5^{9}\right) \bmod 7=\left(5^{2} \times 5^{2} \times 5^{2} \times 5^{2} \times 5\right) \bmod 7\)
\(=\left(5^{2} \times 5^{2} \times 5^{2} \times 5^{2} \times 5\right) \bmod 7=\left(\left(\left(5^{2}\right) \bmod 7\right)^{4} \times(5 \bmod 7)\right) \bmod 7\)
\(=\left((25 \bmod 7)^{4} \times(5)\right) \bmod 7\)
\(=\left(4^{4} \times 5\right) \bmod 7\)
\(=\left(4^{2} \times 4^{2} \times 5\right) \bmod 7\)
\(=(2 \times 2 \times 5) \bmod 7\)
\(=(20) \bmod 7\)
\(=6\)
```

2. Which numbers are relative prime to 21 ?

Solution
$|\{1,2,4,5,8,10,11,13,16,17,19,20\}|=12$
(Recall: $\operatorname{gcd}(6,21)$ is 3 and therefore 6 and 21 are not relatively prime!)
3. Compute the $\operatorname{gcd}(1037,768)$ using the Euclidean algorithm.

Solution

step	a	b	q	r
1	1037	768	1	269
2	768	269	2	230

3	269	230	1	39
4	230	39	5	35
5	39	35	1	4
6	35	4	8	3
7	4	3	1	1
8	3	1	3	0

4. Determine the result of Euler's Totient function ϕ for the value 37. Don't look it up; just think about it.

Solution

36 because 37 is a prime number. Hence all numbers below are necessarily relatively prime to $37!$
5. Convince yourself that Fermat's (little) theorem holds. E.g., for the numbers: $a=9, p=7$.

Solution

$9^{6} \bmod 7=531441 \bmod 7=1$
6. Convince yourself that Euler's theorem holds. E.g., for the following values: $\mathrm{a}=7$ and $\mathrm{n}=9$.

Solution

$\phi(9)=6=|\{1,2,4,5,7,8\}|$
$7^{6} \bmod 9=1$
7. Execute the Miller-Rabin Algorithm for $\mathrm{n}=37$.

Solution

```
primality test for 37:
k s a clll
round 0:
0
0 1-1 27 1
round 1:
```

1	0	19	6	36
1	1	19	36	1
round	$2:$			
2	0	18	31	36
2	1	18	36	1
probably prime				

Miller-Rabin Algorithm:

