

IT-Security Cryptography and Secure Communications

Exercise: Introduction to Number Theory

Lecturer: *Prof. Dr. Michael Eichberg* Version: 2023-10-19

1. Compute the result of $5^9 \mod 7$ by hand. Don't use a calculator!

```
One Possible Solution

(5^9) \mod 7 = (5^2 \times 5^2 \times 5^2 \times 5^2 \times 5) \mod 7

= (5^2 \times 5^2 \times 5^2 \times 5^2 \times 5) \mod 7 = (((5^2) \mod 7)^4 \times (5 \mod 7)) \mod 7

= ((25 \mod 7)^4 \times (5)) \mod 7

= (4^4 \times 5) \mod 7

= (4^2 \times 4^2 \times 5) \mod 7

= (2 \times 2 \times 5) \mod 7

= (20) \mod 7

= 6
```

2. Which numbers are relative prime to 21?

Solution

|{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}| = 12

(Recall: gcd(6, 21) is 3 and therefore 6 and 21 are not relatively prime!)

3. Compute the gcd(1037, 768) using the Euclidean algorithm.

Solution				
step	а	b	q	r
1	1037	768	1	269
2	768	269	2	230

_					
	3	269	230	1	39
	4	230	39	5	35
	5	39	35	1	4
	6	35	4	8	3
	7	4	3	1	1
	8	3	1	3	0

4. Determine the result of Euler's Totient function ϕ for the value 37. Don't look it up; just think about it.

Solution

36 because 37 is a prime number. Hence all numbers below are necessarily relatively prime to 37!

5. Convince yourself that Fermat's (little) theorem holds. E.g., for the numbers: a = 9, p = 7.

Solution

 $9^6 \mod 7 = 531441 \mod 7 = 1$

6. Convince yourself that Euler's theorem holds. E.g., for the following values: a=7 and n=9.

Solution $\phi(9) = 6 = |\{1, 2, 4, 5, 7, 8\}|$ $7^6 \mod 9 = 1$

7. Execute the Miller-Rabin Algorithm for n = 37.

Solution

```
primality test for 37:
k
       s
              а
                      х
                             У
round 0:
       0
             27
                     36
                             1
0
       1
             27
                     1
                             1
0
round 1:
```

1 0 1	9 6 36	
round 2:	9 36 1	
2 0 1	8 31 36	
2 1 1	8 36 1	
probably prime		