

## IT-Security Cryptography and Secure Communications

Exercise: Block Ciphers

Lecturer: *Prof. Dr. Michael Eichberg* Version: 2023-10-19

## Feistel Cipher

- 1. Implement a feistel chiper in the programming language of your choice (e.g., Java, Scala, Python, C, (JavaScript) ...) that enables you to:
  - encrypt and decrypt messages
  - encrypt blocks of 128 bits
  - easily exchange the function *f* to test the effect of *f* (depending on the language of your choice you can, e.g, use native higher order functions or a function pointer)
  - you can use a function that produces the round keys by simply shifting the key

## Note

Don't worry about messages that are larger or smaller than the block size. This is not necessary to understand the impact of f or using a round key. Don't worry about a key that does not have the appropriate size. I.e., use a message and a key with the appropriate size.

- 2. What happens if f just returns 0x00 values (independent of the round key)?
- 3. What happens if *f* just returns *0x01* values (independent of the round key)?
- 4. What happens if *f* simply xors the respective half with the result of the shift of the key?
- 5. Test what happens when you change your message. In particular test what happens when the message just consists of *0x00* (and you use a "more reasonable" *f* function.)
- 6. Test what happens when you change your key. What happens in extrem cases (e.g., the password just consists of "0"s?

## Solution

A naive Python implementation of the algorithm can be found here:

Jupyter Notbook with Solution

By adapting the above implementation and testing it, it will immediately beome apparent that the use of an inappropriate f function will lead to no security at all and that the design of such a function is really hard work. Additionally, it is necessry to consider all possible scenarios.