IT-Security Cryptography and Secure Communications

Exercise: Finite Fields

Lecturer: Prof. Dr. Michael Eichberg
Version: 2023-10-19

1. Fill in the missing values $\left(G F\left(2^{m}\right)\right)$

Polynomial	Binary	Decimal
$x^{7}+x^{6}+x^{4}+x+1$	11001001	
		133
$x^{4}+x^{2}+x$	00011001	
		10

Solution

Polynomial	Binary	Decimal
$x^{7}+x^{6}+x^{4}+x+1$	11010011	211
$x^{7}+x^{6}+x^{3}+1$	11001001	201
$x^{7}+x^{2}+1$	10000101	133
$x^{4}+x^{2}+x$	00010110	22
$x^{4}+x^{3}+1$	00011001	25
$x^{3}+x$	00001010	10

2. In $G F\left(2^{5}\right)$ with irreducible polynom $p(x)=x 5+x 2+1$

- Calculate: $\left(x^{3}+x^{2}+x+1\right)-(x+1)$

Solution

$$
x^{3}+x^{2}
$$

- Calculate: $\left(x^{4}+x\right) \times\left(x^{3}+x^{2}\right)$

Solution

$f(x)=\left(x^{4}+x\right) \cdot\left(x^{3}+x^{2}\right) \bmod p(x)=x^{7}+x^{6}+x^{4}+x^{3} \bmod p(x)=x^{2}+x$

- Calculate: $\left(x^{3}\right) \times\left(x^{2}+x^{1}+1\right)$

Solution

$x^{4}+x^{3}+x^{2}+1$

- Calculate: $\left(x^{4}+x\right) /\left(x^{3}+x^{2}\right)$ given $\left(x^{3}+x^{2}\right)^{-1}=\left(x^{2}+x+1\right)$

Recall: Division can be defined in terms of multiplication: if $a, b \in F$ then $a / b=a \times\left(b^{-1}\right)$, where b^{-1} is called the inverse of b.

Solution:

$x^{4}+1$

- Verify: $\left(x^{3}+x^{2}\right)^{-1}=\left(x^{2}+x+1\right)$

Solution

Result is 1 (rest).
3. $\ln G F\left(2^{8}\right)$

Let's assume that 7 and 3 are representatives of the bit patterns of the coefficients of the polynomial.

- Calculate: 7d - 3d
- Calculate: $7 d+3 d$

Solution

```
7 = 0000 0111
3 = 0000 0011
xor =>.. 0100
```

Solution in both cases: 4 (i.e., addition and subtraction is the same; every value is its additive inverse.)

- Calculate: $(0 x 03 \times 0 \times 46)$

Solution
$03 \times 46=46 \oplus(02 \times 46)$
$=01000110_{b} \oplus 10001100_{b}=11001010_{b}=202_{d}=0 x C A$

