

IT-Security Cryptography and Secure Communications

Exercise: Finite Fields

Lecturer: Prof. Dr. Michael Eichberg Version: 2023-10-19

1. Fill in the missing values $(GF(2^m))$

Polynomial	Binary	Decimal	
$x^7 + x^6 + x^4 + x + 1$			
	11001001		
		133	
$x^4 + x^2 + x$			
	00011001		
		10	

Solution

Polynomial	Binary	Decimal	
$x^7 + x^6 + x^4 + x + 1$	11010011	211	
$x^7 + x^6 + x^3 + 1$	11001001	201	
$x^7 + x^2 + 1$	10000101	133	
$x^4 + x^2 + x$	00010110	22	
$x^4 + x^3 + 1$	00011001	25	
$x^3 + x$	00001010	10	

- 2. In $GF(2^5)$ with irreducible polynom p(x) = x5 + x2 + 1
 - Calculate: $(x^3 + x^2 + x + 1) (x + 1)$

Solution $x^3 + x^2$

• Calculate: $(x^4 + x) \times (x^3 + x^2)$

Solution

 $f(x) = (x^4 + x) \cdot (x^3 + x^2) \mod p(x) = x^7 + x^6 + x^4 + x^3 \mod p(x) = x^2 + x$

• Calculate: $(x^3) \times (x^2 + x^1 + 1)$

Solution $x^4 + x^3 + x^2 + 1$

• Calculate: $(x^4 + x)/(x^3 + x^2)$ given $(x^3 + x^2)^{-1} = (x^2 + x + 1)$

Recall: Division can be defined in terms of multiplication: if $a, b \in F$ then $a/b = a \times (b^{-1})$, where b^{-1} is called the inverse of *b*.

Solution: $x^4 + 1$

• Verify: $(x^3 + x^2)^{-1} = (x^2 + x + 1)$

Solution		
Result is 1 (rest).		

3. In *GF*(2⁸)

Let's assume that 7 and 3 are representatives of the bit patterns of the coefficients of the polynomial.

- Calculate: 7d 3d
- Calculate: 7d + 3d

Solution

```
7 = 0000 0111
3 = 0000 0011
xor =>.. 0100
```

Solution in both cases: 4 (i.e., addition and subtraction is the same; every value is its additive inverse.)

• Calculate: $(0x03 \times 0x46)$

Solution $03 \times 46 = 46 \oplus (02 \times 46)$ $= 0100 \ 0110_b \oplus 1000 \ 1100_b = 1100 \ 1010_b = 202_d = 0xCA$