IT-Security Cryptography and Secure Communications

Exercise: Public Key Cryptography

Lecturer: Prof. Dr. Michael Eichberg

Version: 2023-10-19

1. Execute the Square-and-Multiply algorithm for $3^{\wedge} 17 \bmod 23$.

Solution

```
k = 0001 0001b
i = 4; f = 3 =>
i = 3; f = 9 =>
i = 2; f = 81 mod 23 = 12 =>
i = 1; f = 144 mod 23 = 6 =>
i = 0; f = (((6 * 6) mod 23) * 3) mod 23 = 16
```

2. Perform an encryption of a message using RSA.
I.e., choose 2 small prime numbers, compute e,d,n. Then encrypt the message (i.e., a (rather) small value) using the public key of a fellow student and send him the encrypted message. Let her/him decrypt your message. Afterwards validate that the encryption is successful.

Solution
Let's assume that $p=7$ and $q=11$.
$n=p \times q=77$
$\phi(n)=(p-1)(q-1)=6 \times 10=60$;
Hence the message has to be "less than" 60.
Compute e such that $\operatorname{gcd}(\phi(n), e)=1$.
In this case, 2 to 6 are not possible because they all divide 60 . We will select $e=7$
Compute d; i.e., ed $\bmod \phi(n)=1 . d=43 ;(43 \times 7) \bmod \phi(60)$
Now: $\mathrm{PU}=\{7,77\}, \mathrm{PR}=\{43,77\}$.
Let the message M be "13": $C=13^{7} \bmod 77=62$.
To get the plaintext compute $P=62^{43} \bmod 77$.
3. Can you think of a scenario in which fault-based attacks may be practical?

Solution

It is always practical when you have physical access to a device for a reasonable time to execute the attack. E.g., in IT-forensics.

