
Lecturer:
Contact:
Version:

Slides:

Reporting issues:

Architectures of
Distributed
Applications
A first overview.

Prof. Dr. Michael Eichberg
michael.eichberg@dhbw.de, Raum 149B
1.0

https://delors.github.io/ds-architectures/folien.en.rst.html
https://delors.github.io/ds-architectures/folien.en.rst.html.pdf
https://github.com/Delors/delors.github.io/issues

Selected slides are based on slides by Maarten van Steen (Distributed Systems)
All errors are my own.

1

https://delors.github.io/cv/folien.de.rst.html
mailto:michael.eichberg@dhbw.de
https://delors.github.io/ds-architectures/folien.en.rst.html
https://github.com/Delors/delors.github.io/issues
https://delors.github.io/ds-architectures/folien.en.rst.html.pdf

1. Basic architectures
2

Architectural Styles
An architectural style is formulated in the form of

▫

(interchangeable) components with clearly defined interfaces

▫

the way in which the components are connected to each other

▫

the data exchanged between the components

▫

the way in which these components and connections are configured together to form a system System.

Connector
A mechanism that mediates communication, coordination or co-operation between components.
Example: Facilities for (remote) procedure calls (RPC), message transmission or streaming.

3

Layered Architectures

Layer N

Layer N-1

Layer 2

Layer 1

Request-
Response
Call

Oneway
Call

Layer N

Layer N-1

Layer N-3

Layer N-2

Layer N

Layer N-1

Layer N-2

Ha
nd

le

Callback

4

Example of a 3-tier Architecture

Database

User Interface
(Webpage)

User Interface Level

Business Logic Level

Persistence Level

5

Traditional Architectures

Rich Client Network Persistence

Thin Client Network Persistence
Presentation Logic

(Web Server)

2-Layers (2-Tier)

3-Layers (3-Tier)

N-Tier

Service Interface

Service Interface

Traditional 3-tier Architecture
This architecture can be found in many distributed information systems with traditional database
technology and associated applications.

▫

The presentation layer represents the interface to users or external applications.

▫

The processing layer implements the business logic.

▫

The persistence/data layer is responsible for data storage.

6

Publish and Subscribe Architectures
Dependencies between the components are realised using the Publish and Subscribe paradigm
with the aim of loose coupling.
Taxonomy of coordination approaches with regard to communication and coordination:

Coupled in time Decoupled in time
Referentially

coupled Direct Coordination Mailbox Coordination

Referentially
decoupled Event-based Coordination Shared Data Space

Event-based Coordination

Component Component

Component

Event Bus

publish

subscribe Event delivery

Shared Data Space

Component Component

shared (persistent)
Data Storage

publish subscribe Data Provisioning

Event-based coordination in combination with shared data space is often used to realise publish
and subscribe architectures.

Direct coordination
A process interacts directly (⇒ temporal coupling) with exactly one other well-defined process (⇒
referential coupling).

Mailbox coordination
The processes communicating with each other do not interact directly with each other, but via a
unique mailbox (⇒ referential coupling). This means that the processes do not have to be available
at the same time.

Event-based coordination
A process triggers events to which any other process reacts directly. A process that is not available

at the time the event occurs does not see the event.

Shared data storage
Processes communicate via tuples that are stored in a shared data space. A process that is not
available at the time of writing can read the tuple later. Processes define patterns with regard to
the tuples they want to read.

7

Structure of cloud computing applications

Hardware
(CPU, Memory, Bandwidth)

Infrastructure
(Compute , Data Storage (Block or File))

Platforms
(Software Frameworks (.Net, Java), Databases)

Applications
(Multimedia, Business Applications)

Software
as a Service

Platform
as as Service

Infrastructure
as a Service

Data Centers

Amazon S3,
Amazon EC2

Google App engine
MS Azure

Google Docs
Apple iCloud
Gmail

Examples

A distinction can be made between four layers:
Hardware: processors, routers, power supply and cooling systems.

Infrastructure: Use of virtualization techniques for the purpose of allocating and managing virtual
storage and virtual servers.
Platforms: Provides higher level abstractions for storage and the like.

Application: Actual applications, such as office suites (word processing programmes, spreadsheet
programmes, presentation applications).

8

Normally completely transparent for customers.

Example: The Amazon S3 storage system provides an API for (locally created) files that can be organized and stored
in so-called buckets.

Comparable to the suite of applications that are delivered with operating systems.

2. Microservices [Newman2021]
9

Microservices
A simple microservice that offers a REST
interface and emits events.
Where are the challenges?

Topic

Shipping EventShipping EventShipping Event

Consumers
Consumers

Consumers

Shipping
DB

REST API

Emits events Consumes events

Events are emitted or published

Events are consumed

A major challenge is the design of the interfaces. To achieve true independence, the interfaces
must be very well defined. If the interfaces are not clearly defined or inadequate, this can lead
to a lot of work and coordination between the teams, which is actually undesirable!

10

Key Concepts of Microservices
can be deployed independently/are independently deployable

model a business domain

manage their own state

are small

flexible in terms of scalability, robustness and the used technologies
allow the architecture to be aligned with the organization (see Conway's Law)

11

(... and are developed independently.)

(Often along a bounded context or an aggregate determined using DDDs.)

(I.e. they have no shared database.)

(Small enough to be developed by (max.) one team.)

Microservices and Conway's Law
Traditional Layered Architectures

Web UI
«Presentation»

Backend
«Business Logic»

Database
«Data»

Scope of
Change

!

"

#

$

%

&

Microservices Architectures

Scope of
Change

! "#$
%

&

Function
C

Function
B

Function
A

Frontend

Data

Business
Logic

12

Microservices and Usage of Technologies
Microservices are flexible with regard to the use of technology and enable the use of “the most
suitable” technology.

Document
store

Graph
DB

Blob
Store

13

Aktuelle Standardtechnologien

Quelle: TIOBE Programming Community Index - April 2012

Quelle: TIOBE Programming Community Index - Feb. 2024

14

https://www.tiobe.com/tiobe-index/

Microservices and Scalability
Well designed microservices can also be scaled very well.

15

Implementation of a long-lived transactions?

Order fulfillment

Check item in stock
and reserve for order

Fulfillment
completed

Take money from
customer

Package and send
order

Award points to
customer

Payment
Gateway

Loyalty

handled by

Warehouse

Warehouse

The implementation of transactions is one of the biggest challenges in the development of microservices.

16

Using SAGAs for long-lived transactions

compensating
transactions

Order fulfillment

Check item in stock
and reserve for order

Fulfillment
completed

Take money from
customer

Package and send
order

Award points to
customer

Payment
Gateway

Loyalty

handled by
✅

⛔

✅

✅

Order
fulfillment
rolled back

Remove stock
reservation

Give money back
to customer

Take points aways
from customer

Warehouse

Warehouse

A saga is a sequence of actions that are executed to implement a long-lived transaction.
Sagas cannot guarantee atomicity. However, each system can guarantee atomicity (e.g. by using
traditional database transactions).
If the transaction needs to be aborted, a traditional rollback cannot be performed. The saga must then
carry out the corresponding compensating transactions, which undo all previously successful actions.

17

Minimize the probability of possible rollbacks

compensating
transactions

Order fulfillment

Check item in stock
and reserve for order

Fulfillment
completed

Take money from
customer

Award points to
customer

Package and send
order

Payment
Gateway

Loyalty

handled by✅

⛔

✅

Order
fulfillment
rolled back

Remove stock
reservation

Give money back
to customer

Warehouse

Warehouse

The processing sequence of the actions can be optimized to minimize the probability of rollbacks.
In this case, the probability of a rollback occurring during the "package and send order” step is
significantly higher than for the “award customer bonus” step.

18

Long-lived transactions with orchestrated sagas

1. reserve
stock

4. send
package

3. award
points

2. take payment

Warehouse

«orchestrator»

The orchestrated saga is one way of implementing long-lived transactions.
✓Conceptually simple

High degree of domain coupling

High degree of request-response interactions
Risk that functionality that would be better accommodated in the individual services (or possibly
new services) is moved to the ordering service.

19

As this is essentially domain-driven coupling, this coupling is often acceptable. The coupling does not generate
any technical debt.

Long-lived transactions with choreographed sagas

Order
placed

«Event»

Payment
taken

«Event»

Points
awarded
«Event»

Stock
reserved
«Event»

Order
shipped
«Event»

6. emits

6. emits

4. emits

5. reacts to

5. reacts to

3. reacts to

2. emits

1. reacts to

Warehouse

A major problem with choreographed sagas is keeping track of the current status. This problem
can be alleviated by using a “correlation ID”.

20

Dual-write Problem

OpA
Table

update

publish

doOpA

Process X
Where could there be a problem?

Writing to two different systems (here:
database and event-processing middleware)
always requires a transactional context.
If this cannot be established, inconsistencies can
occur (dual-write problem).

OpA
Table

update

publish

doOpA

Process X

X

Solution Ideas

❗

2PC is not an option in the context of microservices
(too slow, too complex)

❗

Changing the order of actions (1st publish
then 2nd update) still leads to inconsistencies

❗

notifying the event processing middleware
(synchronously) - i. e. as part of the database update -
is also not an option:

❗

What happens if the middleware cannot
be reached?

❗

What happens if the event cannot be processed?
Strict consistency cannot be achieved.

21

Warning

Dual-write Problem - Outbox Pattern

«atomic»
update

triggered by
change

doOpA

Process X

OpA-
Outbox

Table

OpA
Table

register
handler

(a) Solution: Outbox Pattern

▫

The actions are (additionally) saved in an outbox table and then processed asynchronously.

▫

This enables eventual consistency to be achieved.

22

The choice of software architecture is always a consideration of many trade-offs!

Other aspects that can/must be considered:

▫

Cloud (and possibly serverless)

▫

Mechanical Sympathy

▫

Testing and deployment of microservices (keyword: Canary Releases)

▫

Monitoring and logging

▫

Service meshes

▫

...

23

Literature
[Newman2021] Sam Newman, Building Microservices: Designing Fine-Grained Systems, O'Reilly, 2021.

24

