
Lecturer:
Contact:
Version:

Folien:

Fehler melden:

Basic Concepts of
Distributed Systems

Prof. Dr. Michael Eichberg
michael.eichberg@dhbw.de
1.0

https://delors.github.io/ds-basic-concepts/folien.en.rst.html
https://delors.github.io/ds-basic-concepts/folien.en.rst.html.pdf
https://github.com/Delors/delors.github.io/issues

1

The following concepts are of central importance for the development of distributed systems and are
implemented in many current middleware products.

2

1. Time in distributed systems
3

The importance of time in distributed systems
Updates that are carried out across several systems must be carried out in the correct order.
Log entries should be made in the correct order.
Validity of authorizations (e.g. certificates)
Geographical positioning (e.g. GPS)

4

Problems when the Time is not correct
A recent surge in GPS “spoofing”, a form of digital attack which can send commercial airliners off
course, has entered an intriguing new dimension, according to cybersecurity researchers: The ability
to hack time. [...]

“We think too much about GPS being a source of position, but it's actually a source of time,” [...]
“We're starting to see reports of the clocks on board airplanes during spoofing events start to do
weird things." In an interview with Reuters, Munro [at Defcon] cited a recent incident in which an
aircraft operated by a major Western airline had its onboard clocks suddenly sent forward by years,
causing the plane to lose access to its digitally-encrypted communication systems.

—11. August, 2024 - GPS spoofers 'hack time' on commercial airlines

5

Solar second:
Atomic Second:

UTC (Universal Coordinated Time):

Distributed Systems: Real vs. Logical Time
Logical Time
Logical time allows us to determine a well-defined sequence between events (cf. happened before
relation). This is often sufficient for distributed systems.

Real Time
refers to the period of time between successive solar equinoxes.
The reference point is the period of oscillation of a caesium-133 atom.
TAI (Temps Atomique International): Average time of the atomic clocks of over 60
institutes worldwide (e.g. Braunschweig), determined by the BIH (Bureau International
de l'Heure) in Paris.

Based on TAI; it is currently still necessary to insert occasional leap seconds to adjust to
the solar day. The leap second is expected to be abolished from 2035.

6

Computer Clock Time
Real-time Clock (RTC): internal battery-buffered clock.

Radio-controlled clock (DCF77 from Mainflingen, approx. 2000 km range)
GPS signal (Global Positioning System) with a resolution of approx. 100 ns
by means of message exchange with a time server

7

(The accuracy and resolution are sometimes very coarse).

Clock synchronization according to Christian
(Probabilistic Clock Synchronisation, 1989)

Prerequisite: central time server with UTC.
Clients ask periodically and correct by half the response time
Client clocks are never reset but only slowed down or accelerated if necessary.

8

Network Time Protocol (NTP, RFC 5905)
Synchronisation to UTC

Hierarchy of time servers

Mutual exchange of time stamps between the server computers is supported (NTP is symmetrical).

However, the time of an NTP server is only updated if the requesting server has a higher stratumvalue (i.e. is
potentially less precise) than the requested server. The requesting server then receives the stratum value of
the queried server +1.

9

in the local network with an accuracy of up to 200 microseconds
on the Internet with an accuracy of 1-10 milliseconds

Stratum 0: Quelle - z. B. DCF77-Zeitzeichensender
Stratum 1: Primary server
Stratum 2,...: Secondary-/...server
Clients

Time: Calculation of the round
trip time and the time difference

Origin System time of the client when sending the request
Receive System time of the server when the request is received
Transmit System time of the server when sending the response
Destination System time of the client when receiving the response

Exact clock synchronization cannot be achieved in an asynchronous system!

It is assumed that time passes at virtually the same speed on both computers. The time difference between
the two computers is therefore constant.

 is the time required by the server for processing.

The round trip time (RTT) is the time it takes for a signal to travel from one computer to another and back.
The time difference is the difference between the time on the server and the time on the client.
Problems with clock synchronisation arise due to uncertain latencies:

Message transmission time (depending on distance and medium)
Time delay in routers during relaying (load-dependent)
Time until interrupt acceptance in the operating system (context-dependent)
Time for copying buffers (load-dependent)

Due to these problems, a consistent, realistic global snapshot cannot be realised.

10

T1
T2
T3

T4

RTT: r = (T4 − T1) − (T3 − T2)

Time difference: x = (T2 − T1) − (T4 − T3)
2

Attention!

(T3 − T2)

Example of Calculating the Time Difference
Let the latency be 5 ms and the processing time 2 ms.
Furthermore, let and . I.e. the client is ahead.

Since the processing time of the server is 2 ms, the following applies for and :
 and

.

This results in the time difference:

 ms.

11

T1 = 110 T2 = 100
T3 T4

T3 = 102
T4 = 110 + (2 × 5) + 2 = 122

x = (100−110)−(122−102)
2

= (−10−20)
2

= −15

Logical Time

For the consistent view of events in a distributed system, the real time is not important in many cases!
We only need a globally unique sequence of events, i.e. we need timestamps.
However, not all events influence each other, i.e. they are causally independent.

It is important to know what happened before and what happened after, but it is not important that we
know exactly when (time) something happened.

12

Observation

Lamport-Uhren (logical clocks)

An event (write, send, receive) is a change in a process.

Procedure
before write and send: increment the local time
send always include the timestamp:
before receive:

The receive event is always after send.
Events are categorised according to the happened-before relation: a → b
(a happened-before b)
The result is a partial ordering of the events.
A consistent snapshot contains the corresponding send event for each receive event.

Lamport clocks are one way of supporting totally-ordered multicasts, which is particularly necessary in
combination with replication.

13

Definition

Tlocal = Tlocal + 1
Tmsg = Tlocal

Tlocal = max(Tmsg, Tlocal) + 1

Exercise
1.1. Lamport-Clocks

Consider the following situation with three processes in a distributed system. The timestamps of the events
are assigned using Lamport's clocks. (The values c on the far left indicate the state of the respective clocks
at the beginning).
a. Provide all events with the correct timestamps.
b. Specify a consistent save point containing event r.

c = 1

c = 2

c = 4

T
i m

 e

c f h j m o r s

b e i l n

a d g k p q

14

2. Distributed transactions
15

„Atomic Commit Protocol“
Distributed transactions extend over several processes and usually also over several nodes in a
distributed system.
More error cases must be taken into account.

One example would be the transfer of a sum of money (conceptual example):
 1 send_money(A, B, amount) {
 2 Begin_Transaction();
 3 if (A.b!"ance - amount !" 0) {
 4 A.b!"ance = A.b!"ance - amount;
 5 B.b!"ance = B.b!"ance + amount;
 6 Commit_Transaction();
 7 } else {
 8 Abort_Transaction();
 9 } }

We need an Atomic Commit Protocol.

Repetition: Transactions
A transaction ensures the reliable processing of persistent data - even in error situations. The central
feature is the guarantee of the ACID properties (Atomicity, Consistency, Isolation, Durability).
At the end of a transaction, either a commit or abort / rollback takes place.
After a commit, all changes are permanent.

Fault tolerance
The aim is to make it possible to build a reliable system from unreliable components.
Three basic steps:
1. error detection: recognising the presence of an error in a data value or a control signal
2. fault localization: limiting the propagation of faults
3. masking errors: developing mechanisms that ensure that a system functions correctly despite an error

(and possibly corrects an error)

16

Two-Phase Commit Protocol - 2PC
Participants are (1) those (), who manage the distributed data, and (2) a coordinator (), who controls the
protocol. (may itself be one of the)
1. Coordination Phase:

K sends a PREPARE message to all .
Each checks for itself whether the transaction can be completed correctly locally.
If so, it sends READY, otherwise ABORT to

2. Decision Phase:
If all have responded with READY, sends COMMIT to all ; otherwise sends an ABORT
message to all
If the decision was COMMIT, all make the transaction stable
If the decision was ABORT, all roll back the transaction.
Finally, all send an OK message to

The 2-PC protocol is not error-resistant, i.e. it can recognise errors but cannot necessarily correct them. To
handle some error scenarios, results (especially READY and COMMIT) must be recorded in a persistent write-
ahead log file.

17

Pi K
K Pi

Pi

Pi

K

Pi K Pi K
Pi

Pi

Pi

Pi K

DNS:
Banking:

CAP Theorem[1]
In distributed (database)systems, only two of the following three properties can be guaranteed at the same
time:

Consistency

Availability

Partition
Tolerance

Consistency

Availability

Partition tolerance

The CAP theorem only refers to distributed systems. Network partitioning can always occur in such systems.
Therefore, partition tolerance is a natural property and you can often only choose between consistency and
availability.
Which properties are important in which scenarios?

Availability and partition tolerance
Consistency and partition tolerance

[1] 2000 Brewer(Conjecture), 2002 Gilbert and Lynch(Proof)

18

After completion of a transaction, the return value of the next read operation is the
result of the last write operation or an error.

Each request receives a response in an acceptable time.

The system also works with network partitioning, i.e. nodes can no longer
communicate with each other.

Exercise
2.1. Two-Phase-Commit

Analyse how the two-phase commit protocol deals with error situations.
Which errors can occur at which points in time and which can the protocol rectify?

19

