
Dozent:
Kontakt:
Version:

Slides/Scripts:

Reporting errors:

Concurrency in Java
Prof. Dr. Michael Eichberg
michael.eichberg@dhbw.de
1.0

https://delors.github.io/ds-concurrency-in-java/folien.en.rst.html
https://delors.github.io/ds-concurrency-in-java/folien.en.rst.html.pdf
https://github.com/Delors/delors.github.io/issues

1

https://delors.github.io/cv/folien.de.rst.html
mailto:michael.eichberg@dhbw.de
https://delors.github.io/ds-concurrency-in-java/folien.en.rst.html
https://github.com/Delors/delors.github.io/issues
https://delors.github.io/ds-concurrency-in-java/folien.en.rst.html.pdf

2

A good understanding of concurrent programming is essential for the development of distributed
applications, as servers always process several requests simultaneously.!

Processes vs. threads

▫

Processes are isolated from each other and can only communicate with each other via explicit
mechanisms; processes do not share the same address space.

▫

All threads of a process share the same address space. Native threads are threads supported by the
operating system that are managed directly by the operating system. Standard Java threads are native
threads.

▫

Fibres* (also coroutines) always use cooperative multitasking. This means that a fibre explicitly passes
control to another fibre. (Formerly also referred to as green threads.) These are invisible to the operating
system.

▫

As of Java 21, Java not only supports classic (native) threads but also virtual threads (which are
"somewhere" between green threads and native threads. The latter in particular allow very natural
programming of middleware that takes care of parallelization/concurrency.

3

Processes

Thread Library Thread Library

Monitor

Lock

State

In
te

rf
ac

e

Communication and synchronisation with the help of monitors
A monitor is an object in which the methods are executed in mutual exclusion (mutual exclusion).

Condition synchronisation

▫

expresses a condition on the order in which operations are executed.

▫

For example, data can only be removed from a buffer once data has been
entered into the buffer.

▫

Java only supports one (anonymous) condition variable per monitor, with
the classic methods wait and notify or notifyAll.

Monitors are just one model (alternatives: Semaphores, Message Passing) that enables the communication
and synchronisation of threads. It is the standard model in Java and is directly supported by the Java Virtual
Machine (JVM).

4

Warning
In Java, mutual exclusion only takes place between methods that have been explicitly declared as
synchronised.

Communication between threads with the help of monitors

▫

By reading and writing data encapsulated in shared objects that are protected by monitors.

▫

Each object is implicitly derived from the class java.lang.Object, which defines a mutual exclusion lock.

▫

Methods in a class can be marked as synchronized. The method is only executed when the lock is present.
It waits until then. This process happens automatically.

▫

The lock can also be acquired via a synchronized statement that names the object.

▫

A thread can wait for a single (anonymous) condition variable and notify it.

5

Concurrency in Java

Thread

Thread(Runnable: r)
run()
start()
setDaemon(boolean)
Thread currentThread()
Thread.Builder ofVirtual()
Thread.Builder ofPlatform()

MyThread

run()

Runnable

run()

MyRunnable

run()

▫

Threads are provided in Java via the predefined class java.lang.Th!"ad.

▫

Alternatively, the interface:

public interface Runnable { void run(); }
can be implemented and an instance can then be passed to a Thread-Objekt.

▫

Threads only start their execution when the start method is called in the thread class. The thread.start
method calls the run method. Calling the run method directly does not lead to parallel execution.

▫

The current thread can be determined using the static method Thread.cur!"ntTh!"ad().

▫

A thread is terminated when the execution of its run method ends either normally or as the result of an
unhandled exception.

▫

Java distinguishes between user threads and daemon threads.
Daemon threads are threads that provide general services and are normally never terminated.
When all user threads are terminated, the daemon threads are terminated by the JVM and the main
programme is terminated.
The method setDaemon must be called before the thread is started.

6

Inter-thread communication and coordination

▫

A thread can wait (with or without a timeout) for another thread (the target) to finish, by calling the join
method of the target thread.

▫

A thread can use the isAlive method to determine whether the target thread has ended.

7

Java Thread States
not existing

new

executable

deadblocked

new Thread(…)

start()

run method ends
wait(),

join()
notify(), n

otifyAll()

„Garbage Collected“

8

synchronized-Methods and synchronized-Blocks

▫

A mutual exclusion lock is assigned to each object. The lock cannot be accessed explicitly by the
application. This happens implicitly if:

▫

a method uses the method modifier synchronized

▫

block synchronization with the keyword synchronized is used

▫

If a method is marked as synchronized, the method can only be accessed if the system has received the
lock.

▫

Therefore, synchronized methods have mutually exclusive access to the data encapsulated by the object,
if this data is only accessed in other synchronized contexts.

▫

Non-synchronized methods do not require a lock and can therefore be called at any time.

9

Example: synchronized method
 1 public class SynchronizedCounter {
 2
 3 private int count = 0;
 4
 5 public synchronized void inc!"!#nt() {
 6 count!";
 7 }
 8
 9 public synchronized int getCount() {
10 return count;
11 }
12 }

 1 public class SharedLong {
 2
 3 private long theData;

// reading and writing longs is not atomic

// reading and writing longs is not atomic
 4
 5 public Sha!"dLong(long initialValue) {
 6 theData = initialValue;
 7 }
 8
 9 public synchronized long !"ad() { return theData; }
10
11 public synchronized void wri!$(long newValue) { theData = newValue; }
12
13 public synchronized void inc!"!#ntBy(long by) {
14 theData = theData + by;
15 }
16 }
17
18 SharedLong myData = new SharedLong(42);

 1 public class SynchronizedCounter {
 2
 3 private int count = 0;
 4
 5 public void inc!"!#nt() {
 6 synchronized(this) {
 7 count!";
 8 }
 9 }
10
11 public int getCount() {
12 synchronized(this) {
13 return count;
14 }
15 }
16 }

Warning
When synchronized is used in all its generality, it can undermine one of the advantages of classic
monitors: The encapsulation of synchronization constraints associated with an object in a single place in
the program!
This is because it is not possible to understand the synchronization associated with a particular object
just by looking at the object itself. Other objects can use a synchronized block in relation to the object.

10

Complex return values

The two methods: readX and readY are not synchronised, as reading int values is atomic. However, they do
allow an inconsistent state to be read! It is conceivable that the corresponding thread is interrupted directly
after a readX and another thread changes the values of x and y. If the original thread is then continued and
calls readY, it receives the new value of y and thus has a pair of x, y that never existed in this form.
A consistent state can only be determined by the method read, which reads the values of x and y in one step
and returns them as a pair.
If it can be ensured that a reading thread names the instance in a synchronized block, then the reading of a
consistent state can also be ensured for several consecutive method calls.

However, this "solution" is very dangerous, as the probability of programming errors is very high and this
can lead to either race conditions (here) or deadlocks (in general).

11

 1 public class SharedCoordinate {
 2
 3 private int x, y;
 4
 5 public Sha!"dCoordina!$(int initX, int initY) {
 6 this.x = initX; this.y = initY;
 7 }
 8
 9 public synchronized void wri!$(int newX, int newY) {
10 this.x = newX; this.y = newY;
11 }
12
13

/* */

/*

⚠

*/ public

/* synchronized irrelevant */

/* synchronized irrelevant */ int !"adX() { return x; }

/* */

/*

⚠

*/
14

/* */

/*

⚠

*/ public

/* synchronized irrelevant */

/* synchronized irrelevant */ int !"adY() { return y; }

/* */

/*

⚠

*/
15
16 public synchronized SharedCoordinate !"ad() {
17 return new SharedCoordinate(x, y);
18 } }

1 SharedCoordinate point = new SharedCoordinate(0,0);
2 synchronized (point1) {
3 var x = point1.!"adX();
4 var y = point1.!"adY();
5 }
6

// do something with x and y

// do something with x and y

Conditional synchronization
For the purpose of conditional synchronisation, the methods wait, notify and notifyAll can be used in
Java. These methods allow you to wait for certain conditions and notify other threads when the condition
has changed.

▫

These methods can only be used within methods that hold the object lock; otherwise a
IllegalMonitorStateException is thrown.

▫

The wait method always blocks the calling thread and releases the lock associated with the object.

▫

The notify method wakes up a waiting thread. Which thread is woken up is not specified.
notify does not release the lock; therefore, the awakened thread must wait until it can receive the lock
before it can continue.

▫

Use notifyAll to wake up all waiting threads.

If the threads are waiting due to different conditions, notifyAll must always be used.

▫

If no thread is waiting, then notify and notifyAll have no effect.

12

When a thread is woken up, it cannot assume that its condition has been fulfilled!
The condition must always be checked in a loop and the thread may have to be put back into the wait
state.

Important

Example: Synchronisation with condition variables
If a thread is waiting for a condition, no other thread can wait for the other condition.
With the primitives presented so far, direct modelling of this scenario is not possible. Instead, all threads
must always be woken up to ensure that the intended thread is also woken up. This is why it is also
necessary to check the condition in a loop.
A BoundedBuffer traditionally uses two condition variables: BufferNotFull und BufferNotEmpty.

Error situation that could occur when using notify instead of notifyAll:

Operation Change of State of the Buffer Waiting for the
lock

Waiting for the
condition

1

g1:bb.get()
g2:bb.get(),
p1:bb.put(),
p2:bb.put()

empty {g2,p1,p2} {g1}

2 g2:bb.get() empty {p1,p2} {g1,g2}
3 p1:bb.put() empty → not empty {p2,g1} {g2}
4 p2:bb.put() not empty {g1} {g2,p2}
5 g1:bb.get() not empty → empty {g2} {p2}
6 g2:bb.get() empty ∅ {g2,p2}

 1 public class BoundedBuffer {
 2 private final int buffer[];
 3 private int first;
 4 private int last;
 5 private int numberInBuffer = 0;
 6 private final int size;
 7
 8 public Boun!%dBu!&er(int length) {
 9 size = length;
10 buffer = new int[size];
11 last = 0;
12 first = 0;
13 };

14 public synchronized void put(int item) throws InterruptedException {
15 while (numberInBuffer !# size)
16 wait();
17 last = (last + 1) % size;
18 numberInBuffer!";
19 buffer[last] = item;
20 notifyAll();
21 };

22 public synchronized int get() throws InterruptedException {
23 while (numberInBuffer !# 0)
24 wait();
25 first = (first + 1) % size;
26 numberInBuffer--;
27 notifyAll();
28 return buffer[first];
29 }
30 }

1 BoundedBuffer bb = new BoundedBuffer(1);
2 Thread g1,g2 = new Thread(() !$ { bb.get(); });
3 Thread p1,p2 = new Thread(() !$ { bb.put(new Object()); });
4 g1.start(); g2.start(); p1.start(); p2.start();

In step 5, the VM woke up the g2 thread - instead of the p2 thread - due to the call of notify by g1. The
awakened thread g2 checks the condition (step 6) and realises that the buffer is empty. It goes back to the
wait state. Now both a thread that wants to write a value and a thread that wants to read a value are
waiting.

13

1. Advanced synchronisation
mechanisms, primitives and concepts.

14

java.util.concurrent:

java.util.concurrent.atomic:

java.util.concurrent.locks:

Java API for concurrent programming

Provides various classes to support common concurrent programming paradigms, e.g.
support for BoundedBuffers or thread pools.

Provides support for lock-free, thread-safe programming on simple variables - such as
atomic integers.

Provides various lock algorithms that complement the Java language mechanisms, e.g.
read-write locks and conditional variables. This enables, for example: "Hand-over-Hand"
or "Chain Locking".

15

Example: Synchronization with ReentrantLocks.
A BoundedBuffer, for example, traditionally has two condition variables: BufferNotFull and BufferNotEmpty.

16

 1 public class BoundedBuffer<T> {
 2
 3 private final T buffer[];
 4 private int first;
 5 private int last;
 6 private int numberInBuffer;
 7 private final int size;
 8
 9 private final Lock lock = new ReentrantLock();
10 private final Condition notFull = lock.!'wCondition();
11 private final Condition notEmpty = lock.!'wCondition();

12 public Boun!%dBu!&er(int length) {

/* Normal constructor. */

/* Normal constructor. */
13 size = length;
14 buffer = (T[]) new Object[size];
15 last = 0;
16 first = 0;
17 numberInBuffer = 0;
18 }

19 public void put(T item) throws InterruptedException {
20 lock.lock();
21 try {
22
23 while (numberInBuffer !# size) { notFull.await(); }
24 last = (last + 1) % size;
25 numberInBuffer!";
26 buffer[last] = item;
27 notEmpty.sign!(();
28
29 } finally {
30 lock.u!)ock();
31 }
32 }

33 public T get() ... {
34 lock.lock();
35 try {
36
37 while (numberInBuffer !# 0) { notEmpty.await(); }
38 first = (first + 1) % size;
39 numberInBuffer--;
40 notFull.sign!(();
41 return buffer[first];
42
43 } finally {
44 lock.u!)ock();
45 }
46 }
47 }

Thread Priorities

▫

Although priorities can be assigned to the Java threads (setPriority), they only serve the underlying
scheduler as a guideline for resource allocation.

▫

A thread can explicitly give up the processor resources by calling the yield method.

▫

yield places the thread at the end of the queue for its priority level.

▫

However, Java's scheduling and priority models are weak:

▫

There is no guarantee that the thread with the highest priority that can run will always be executed.

▫

Threads with the same priority may or may not be divided into time slices.

▫

When using native threads, different Java priorities can be mapped to the same operating system
priority.

17

Best Practices

18

synchronized code should be kept as short as possible.

Nested monitor calls should be avoided as the outer lock is not released when the inner monitor is
waiting. This can easily lead to a deadlock occurring.

19

Warning
If two (or more) threads access the same resources in a different order, a deadlock can occur.

Resources must always be locked in the same order to avoid deadlocks.
Important

2. Thread Safety
20

Thread Safety - Prerequisites
For a class to be thread-safe, it must behave correctly in a single-threaded environment.
I.e. if a class is implemented correctly, then no sequence of operations (reading or writing public fields and
calling public methods) on objects of this class should be able to

▫

set the object to an invalid state,

▫

observe the object in an invalid state, or

▫

violate one of the invariants, preconditions or postconditions of the class.
The class must also behave correctly when accessed by multiple threads.

▫

Independent of scheduling or the interleaving of the execution of these threads by the runtime
environment,

▫

Without additional synchronisation on the part of the calling code.

As a result, operations on a thread-safe object appear to all threads as if the operations were performed
in a fixed, globally consistent order.

21

Immutable:
Thread-safe:

Conditionally thread-safe:

Thread-compatible:

Thread-hostile:

Thread Safety Level
The objects are constant and cannot be changed.
The objects can be changed, but support concurrent access as the methods are
synchronized accordingly.

All objects where each individual operation is thread-safe, but certain sequences of
operations may require external synchronization.

All objects that have no synchronization at all. However, the caller can take over the
synchronization externally if necessary.
Objects that are not thread-safe and cannot be made thread-safe as they manipulate
global status, for example.

22

Exercise
2.1. Delayed Execution
Implement a class (DelayingExecutor) that accepts tasks (instances of java.lang.Runab!#) and executes
them after a certain time. The class must not block or be locked during this time.
Consider using virtual threads. A virtual thread can be created using the method: Thread.ofVirtu!$(). A
Runnable object can then be passed to the start method.
Delay the execution (Thread.!%!&p()) by an average of 100ms with a standard deviation of 20ms. (Use
Random.!'xtGaussian(mean,stddev))
Start 100 000 virtual threads. How long does the execution take? How long does the execution take with 100
000 platform (native) threads?
It is recommended to use the template.

23

 1 import java.ut!".ArrayList;
 2 import java.ut!".List;
 3 import java.ut!".Random;
 4
 5 public class DelayingExecutor {
 6
 7 private final Random random = new Random();
 8
 9 private Thread runDelayed(int id, Runnable task) {
10

// TODO

// TODO
11 }
12
13 public static void main(String[] args) throws Exception {
14 var start = System.nanoTi!#();
15 DelayingExecutor executor = new DelayingExecutor();
16 List<Thread> threads = new ArrayList!%();
17 for (int i = 0; i < 100000; i!") {
18 final var no = i;
19 var thread = executor.runDelayed(
20 i,
21 () !& System.out.prin!*n("i'm no.: " + no));
22 threads.add(thread);
23 }
24 System.out.prin!*n("finished starting all threads");
25 for (Thread thread : threads) {
26 thread.join();
27 }
28 var runtime = (System.nanoTi!#() - start)/1_000_000;
29 System.out.prin!*n(
30 "all threads finished after: " + runtime + "ms"
31);
32 }
33 }

get(int index):

set(int index, Object value):

delete(int index):

Exercise
2.2. Thread-safe programming
Implement a class ThreadsafeArray to store non-null objects (java.lang.Object) at selected indices -
comparable to a normal array. Compared to a normal array, however, a thread which wants to read a value
should be blocked if the cell is occupied. The class should provide the following methods:

Returns the value at the position index. The calling thread may be blocked until a value
has been saved at the index position. (The get method does not remove the value from
the array).

Stores the value value at the position index. If a value has already been saved at the
position index, the calling thread is blocked until the value at the position index has
been deleted.
Deletes the value at position index if a value exists. Otherwise, the thread is blocked
until there is a value that can be deleted.

a. Implement the ThreadsafeArray class using only the standard primitives: synchronized, wait, notify and
notifyAll. Use the template.

b. Can you use both notify and notifyAll?
c. Implement the ThreadsafeArray class using ReentrantLocks and Conditions. Use the template.
d. What are the advantages of using ReentrantLocks?

You can also consider the class ThreadsafeArray as an array of BoundedBuffers with the size 1.
 1 public class ThreadsafeArray {
 2
 3 private final Object[] array;
 4
 5 public Th!"adsafeArray(int size) {
 6 this.array = new Object[size];
 7 }
 8
 9

// complete method signatures and implementations

// complete method signatures and implementations
10 Object get(int index)
11 void !+t(int index, Object value)
12 void !"move(int index)
13
14 public static void main(String[] args) throws Exception {
15 final var ARRAY_SIZE = 2;
16 final var SLEEP_TIME = 1;

// ms

// ms
17 var array = new ThreadsafeArray(ARRAY_SIZE);
18 for (int i = 0; i < ARRAY_SIZE; i!") {
19 final var threadId = i;
20
21 final var readerThreadName = "Reader";
22 var t2 = new Thread(() !& {
23 while (true) {
24 int j = (int) (Math.random() * ARRAY_SIZE);
25 try {
26 out.prin!*n(readerThreadName + "[" + j + "]");
27 var o = array.get(j);
28 out.prin!*n(readerThreadName +
29 "[" + j + "] ⇒ #" + o.hashCo!%());

24

30 Thread.!,!-p(SLEEP_TIME);
31 } catch (InterruptedException e) {
32 e.printStackTrace();
33 }
34 }
35 }, readerThreadName);
36 t2.start();
37
38

// One Thread for each slot that will eventually

// One Thread for each slot that will eventually
39

// write some content

// write some content
40 final var writerThreadName = "Writer[" + threadId + "]";
41 var t1 = new Thread(() !& {
42 while (true) {
43 try {
44 var o = new Object();
45 out.prin!*n(writerThreadName + " = #" + o.hashCo!%());
46 array.!+t(threadId, o);
47 out.prin!*n(writerThreadName + " done");
48 Thread.!,!-p(SLEEP_TIME);
49 } catch (InterruptedException e) {
50 e.printStackTrace();
51 }
52 }
53 }, writerThreadName);
54 t1.start();
55
56

// One Thread for each slot that will eventually

// One Thread for each slot that will eventually
57

// delete the content

// delete the content
58 final var deleterThreadName = "Delete[" + threadId + "]";
59 var t3 = new Thread(() !& {
60 while (true) {
61 try {
62 out.prin!*n(deleterThreadName);
63 array.!%!.!$(threadId);
64 Thread.!,!-p(SLEEP_TIME);
65 } catch (InterruptedException e) {
66 e.printStackTrace();
67 }
68 }
69 }, deleterThreadName);
70 t3.start();
71 }
72 }
73 }

