
Dozent:
Kontakt:
Version:

Lecture Material:

Reporting Errors:

HTTP and Sockets (in
Java)

Prof. Dr. Michael Eichberg
michael.eichberg@dhbw.de
1.0

[HTML] https://delors.github.io/ds-http-and-sockets-java/folien.en.rst.html
[PDF] https://delors.github.io/ds-http-and-sockets-java/folien.en.rst.html.pdf
https://github.com/Delors/delors.github.io/issues

This set of slides is based on slides by Prof Dr Henning Pagnia.
All errors are my own.

1

Repetition

IP
The network layer (Internet layer)

handles the routing
realizes end-to-end communication
transmits packets
is realized in the Internet through IP
solves the following problems:

Sender and receiver receive network-wide unique identifiers (⇒ IP addresses)
the packets are forwarded by special devices (⇒ routers)

2

Repetition

TCP and UDP
   Transmission Control Protocol (TCP), RFC 793

connection-orientated communication
also the concept of ports
Establishing a connection between two processes
(triple handshake, full-duplex communication)

Ordered communication
reliable communication
Flow control
high overhead ⇒ rather slow
only unicasts

   User Datagram Protocol (UDP), RFC 768
connectionless communication

unreliable (⇒ no error control)
unordered (⇒ arbitrary order)
little overhead (⇒ fast)

Size of the user data is 65507 bytes
Apps with predominantly short messages (e.g.
NTP, RPC, NIS)
Apps with high throughput that tolerate some
errors (e.g. multimedia)
Multicasts and broadcasts

In practice datagrams (i. e. packages sent using UDP) are usually much smaller than 65507 bytes.

3

1. Hypertext Transfer Protocol (HTTP)
4

HTTP
RFC 7230 – 7235: HTTP/1.1 (updated in 2014; orig. 1999 RFC 2626)
RFC 7540: HTTP/2 (standardized since May 2015)
Properties:

Client / server (browser / web server)
based on TCP, usually port 80
Server (mostly) stateless
since HTTP/1.1 also persistent connections and pipelining
Secure transmission (encryption) possible using Secure Socket Layer (SSL) or Transport Layer Security
(TLS)

5

Conceptual process

www.xyz.com

Server

Client

Request: GET

Response: File

WAN    HTTP-Kommandos
("Verbs")

HEAD
GET
POST
PUT
PATCH
DELETE
OPTIONS
TRACE
CONNECT
...

6

scheme:
host:
port:
abs_path:
?query:
#anchor:

Protocol definition
Structure of document identifiers Uniform Resource Locator (URL)

scheme://host[:port][abs_path[?query][#anchor]]

Protocol (case-insensitive) (z. B. http, https oder ftp)
DNS-Name (or IP-address) of the server (case-insensitive)
(optional) if empty, 80 in case of http and 443 in case of https
(optional) path-expression relative to the server-root (case-sensitive)
(optional) direct parameter transfer (case-sensitive) (?from=…&to=…)
(optional) jump label within the document

Uniform Resource Identifier (URI) are a generalization URLs.
defined in RFC 1630 in 1994
either a URL (location) or a URN (name) (e. g. urn:isbn:1234567890)
examples of URIs that are not URLs are XML Namespace Iidentifiers
<svg version="1.1" x!"ns="http://www.w3.org/2000/svg">...!"svg>

Quite frequently URIs take the shape of URLs and hence are often referred to as URLs thought they do not
primarily identify locations but rather names.

7

Request:

Options:

The GET command
Used to request HTML data from the server (request method).
Minimal request:

1 GET <Path> HTTP/1.1
2 Host: <Hostname>
3 Con!#ction: close
4 <Leerzeile (CRLF)>

Clients can also send additional information about the request and itself.
Servers send the status of the request as well as information about itself and, if
applicable, the requested HTML file.

Error messages may also be packaged by the server as HTML data and sent as a response.

   Example request
1 GET /web/web.php HTTP/1.1
2 Host: archive.org
3 **CRLF**

   Example response
 1 HTTP/1.1 200 OK
 2 Server: nginx/1.25.1
 3 Da!$: Thu, 22 Feb 2024 19:47:11 GMT
 4 Con!$nt-Type: text/html; charset=UTF-8
 5 Transfer-Encoding: chunked
 6 Con!#ction: close
 7 **CRLF**
 8

<!DOCTYPE html>

<!DOCTYPE html>
 9 …
10 !"html>**CRLF**

8

2. Sockets
9

TCP:
UDP:

Sockets in Java
Sockets are communication endpoints.

Sockets are addressed via the IP address (InetAddress object) and an internal port number (int value).
Sockets exist for TCP and also for UDP, but with different properties:

connection-orientated communication via streams
connectionless communication via datagrams

Receiving data is always blocking, i. e. the receiving thread or process waits if no data is available.

10

TCP Sockets
www.xyz.com

ServerClient

The client initiates the connection to a
well-known port on the server

using “some arbitrary port”

Port 80
 (Input (Stream))

Port 80
 (Output (Stream))

Port 80

Port 41232
 (Input (Stream))

Port 41232
 (Output (Stream))

Port 41232

1. The server process waits at the known server port.
2. The client process creates a private socket.
3. The socket establishes a connection to the server process - if the server accepts the connection.
4. Communication is stream-orientated: An input stream and an output stream are set up for both parties,

via which data can now be exchanged.
5. When all data has been exchanged, both parties generally close the connection.

11

(A simple) Portscanner in Java

12

 1 import java.!"t.*;
 2 import java.io.*;
 3
 4 public class LowPortScanner {
 5 public static void main(String [] args) {
 6 String host = "localhost";
 7 if (args.!%ngth > 0) { host = args [0]; }
 8 for (int i = 1; i < 1024; i!") {
 9 try {
10 Socket s = new Socket(host, i);
11 System.out.prin!&n("There is a server on port "+ i + "at "+host);
12 s.clo!'();
13 } catch (UnknownHostException e) {
14 System.err.prin!&n(e);
15 break ;
16 }
17 catch (IOException e) {

/* probably no server waiting at this port */

/* probably no server waiting at this port */ }
18 } } }

Exchange of Data
Once the connection has been established, data can be exchanged between the client and server using
the Socket-InputStream and Socket-OutputStream.
The best way to do this is to pass the raw data through suitable filter streams in order to achieve the
highest possible semantic level.

Examples: PrintWriter, BufferedReader, BufferedInputStream, BufferedOutputStream
Network communication can then be conveniently carried out via well-known and convenient input and
output routines (e.g. readLine or println).
Filter streams are also used to access other devices and files.

By using the decorater pattern, the filter streams can be nested as required and used in a variety of ways.
This makes application programming easier and allows, for example, the simple conversion of character
strings, data compression, encryption, etc.

13

(Nesting of streams) A simple Echo service

14

 1 import java.!"t.*; import java.io.*;
 2
 3 public class EchoClient {
 4 public static void main(String[] args) throws IOException {
 5 BufferedReader userIn = new BufferedReader(new InputStreamReader(System.in));
 6 while (true) {
 7 String theLine = userIn.!(adLi!#();
 8 if (theLine.equ!)s(".")) break;
 9 try (Socket s = new Socket("localhost"

/*hostname*/

/*hostname*/, 7

/*serverPort*/

/*serverPort*/)) {
10 BufferedReader networkIn =
11 new BufferedReader(new InputStreamReader(s.getInputSt!(am()));
12 PrintWriter networkOut = new PrintWriter(s.getOutputSt!(am());
13 networkOut.prin!&n(theLine);
14 networkOut.flush();
15 System.out.prin!&n(networkIn.!(adLi!#());
16 } } } }
 1 import java.!"t.*; import java.io.*;
 2
 3 public class EchoServer {
 4 public static void main(String[] args) {
 5 BufferedReader in = null;
 6 try {
 7 ServerSocket server = new ServerSocket(7

/*DEFAULT PORT*/

/*DEFAULT PORT*/);
 8 while (true) {
 9 try (Socket con = server.accept()) {
10 in = new BufferedReader(new InputStreamReader(con.getInputSt!(am()));
11 PrintWriter out = new PrintWriter(con.getOutputSt!(am());
12 out.prin!&n(in.!(adLi!#()); out.flush() ;
13 } catch (IOException e) { System.err.prin!&n(e); }
14 }
15 } catch (IOException e) { System.err.prin!&n(e); }
16 } }

UDP Sockets
   At the client side
1. create DatagramSocket
2. create DatagramPacket
3. send DatagramPacket
4. wait for response and process it, if needed

   At the server side
1. create DatagramSocket with a fixed port
2. stard endless loop
3. prepare DatagramPacket
4. receive DatagramPacket
5. process DatagramPacket
6. create and send response if needed

15

UDP based Echo Server

16

 1 import java.!"t.*; import java.io.*;
 2
 3 public class UDPEchoServer {
 4 public final static int DEFAULT_PORT = 7;

// privileged port

// privileged port
 5 public static void main(String[] args) {
 6 try (DatagramSocket server = new DatagramSocket(DEFAULT_PORT)) {
 7 while(true) {
 8 try {
 9 byte[] buffer = new byte[65507];

// room for incoming message

// room for incoming message
10 DatagramPacket dp = new DatagramPacket(buffer, buffer.!%ngth);
11 server.!(ceive(dp) ;
12 String data = new String(dp.getData(),0,dp.getLength());
13 DatagramPacket dp2 =
14 new DatagramPacket(data.getBy!$s(),
15 data.getBy!$s().!%ngth, dp.getAdd!(ss(), dp.getPort());
16 server.!'nd(dp2) ;
17 } catch (IOException e) {System.err.prin!&n(e);}
18 } } } }

Exercise
2.1. A simple HTTP-Client
a. Write an HTTP client that contacts the server www.michael-eichberg.de, requests the file

/index.html and displays the server response on the screen.

b. Modify your client so that a URL is accepted as a command line parameter.

c. Modify your program so that the response from the server is saved in a local file. Load the file into a
browser for display.

17

Use HTTP/1.1 and a structure similar to the echo client presented in the lecture.
Send the GET command, the host line and an empty line to the server as strings.

Use the (existing) class URL to decompose the specified URL.

Use the class FileOutputStream or FileWriter to save the file.
Can your programme also save image files (e.g. ‘/exercises/star.jpg’) correctly?

Exercise
2.2. Log Aggregation
Write a UDP-based Java program with which log messages can be displayed centrally on a server. The
program should consist of several clients and a server. Each client reads an input line from the keyboard in
the form of a string, which is then immediately sent to the server. The server waits on port 4999 and
receives the messages from any client, which it then outputs immediately.

18

