
Dozent:
Kontakt:
Version:

Slides/Script:

Reporting errors:

Introduction to
Distributed Systems
A broad overview of distributed systems!

Prof. Dr. Michael Eichberg
michael.eichberg@dhbw.de, Raum 149B
1.0

https://delors.github.io/ds-introduction/folien.en.rst.html
https://delors.github.io/ds-introduction/folien.en.rst.html.pdf
https://github.com/Delors/delors.github.io/issues

This slide set is based in parts on the following sources:
a. Maarten van Steen (material related to his book on Distributed Systems)
b. Henning Pagnia (based on his lecture Verteilte Systeme).

All errors are my own.
1

2

Recommended Literature

Supplemental material for interested students:

3

Recommended Podcast: SE-Radio

4

Recommended Podcast: Thoughtworks Technology Podcast

5

1. Distributed Systems -
Definition and Properties

6

Distributed vs. Decentralized

7

Integrative view: Connection of existing (locally) networked computer systems to form a larger
system.
Expansive view: an existing networked computer system is expanded to include additional computers.

Zwei Ansichten zur Realisierung verteilter Systeme

A decentralised system is a networked computer system in which processes and resources are
necessarily distributed across multiple computers.
A distributed system is a networked computer system in which processes and resources are
sufficiently distributed across several computers.

Definition

Common misunderstandings regarding centralised systems
1. Centralized solutions do not scale

A distinction must be made between logical and physical centralization.

2. Centralized solutions have a single point of failure

Generally not true (e.g. DNS).
A single possible source of error is often...

easier to manage easier to make more robust

8

The Domain Name System (DNS):

logisch zentralisiert
physisch (massiv) verteilt

dezentralisiert über mehrere Organisationen

Example

Warning
There are many, poorly founded misconceptions about, for example, scalability, fault tolerance or
security. We need to develop skills that make it easy to understand distributed systems in order to avoid
such misunderstandings.

Architectures:
Processes:
Communication:
Coordination:
Naming:
Consistency and replication:

Fault tolerance:
Security:

Perspectives on Distributed Systems
Distributes systems are complex.

What architectures and "architectural styles" are there?
What kind of processes are there and what are their relationships?
What options are there for exchanging data?
How are the involved systems coordinated?
How do you identify resources?

What trade-offs need to be made in terms of data consistency, replication and
performance?
How can operations be maintained even in the event of partial failures?
How can authorized access to resources be guaranteed?

9

Design-goals of Distributed Systems
Shared Usage of Resources
Distribution Transparency
Openness
Scalability

10

Shared Usage of Resources
11

Shared Usage of Resources - Examples
Cloud-based shared storage and files
Peer-to-peer supported multimedia streaming
Shared email services (e.g. outsourced email systems)
Shared web hosting (e.g. content distribution networks)

12

Distribution Transparency
13

Definition

The distribution transparency is realized by many different techniques of the so-called middleware - a layer
between applications and operating systems.

14

Distribution Transparency
Transparency describes the property that a distributed system attempts to hide the fact that its
processes and resources are physically distributed across multiple computers that may be separated by
large(r) distances.

Definition

Aspects of Distribution Transparency

Data access hide differences in data representation and the type of access to a local or
remote object

Location of data
storage hide where an object is located

Relocation hide that an object may be moved to another location while in use
Migration hide that an object may be moved to another location

Replication hide that an object is replicated
Concurrency hide that an object may be shared by several independent users

Fault transparency hide the failure and recovery of an object

Datendarstellung: Big-Endian vs. Little-Endian; ASCII vs. Iso-Latin 8859-1 vs. UTF-8

15

Degree of achievable Distribution Transparency

However, a high level of distribution transparency can result in high costs.
There are communication latencies that cannot be hidden.
It is (theoretically and practically) impossible to completely hide network and node failures.
You cannot distinguish a slow computer from a failed computer.
You can never be sure that a server was actually performing an operation before it crashed.
"Complete transparency" costs performance and exposes the distribution of the system.

Keeping the replicas exactly on the same level as the master takes time
Write operations are immediately transferred to the hard drive for fault tolerance

16

Complete distribution transparency cannot be achieved.
Observation

Disclosing Distribution can bring Advantages
Use of location-based services (E. g. to enable finding friends nearby.)
When dealing with users in different time zones
When it is easier for a user to understand what is going on

17

(E.g. if a server does not respond for a long time, it can be reported as down).

Distribution transparency is a noble goal, but often difficult to achieve and frequently not worth striving
for.

Observation

Open Distributed Systems
18

Open Distributed Systems

Open distributed systems must be able to interact with services of other (open) systems, regardless of the
underlying environment:

they should implement well-defined interfaces correctly
they should be able to interact easily with other systems
they should support the portability of applications
they should be easily extensible

Authentication services are one example. They can be used by many different applications.

19

An open distributed system offers components that can easily be used by other systems or integrated
into other systems.
An open distributed system itself often consists of components that originate from elsewhere.

Definition

Policies vs. Mechanisms

Policies vs. Mechanisms ≘ Vorgaben/Richtlinien vs. Umsetzungen

Policies when implementing openness
What level of consistency do we need for data in the client cache?
What operations do we allow downloaded code to perform?
Which QoS requirements do we adapt in the presence of fluctuating bandwidths?
What level of secrecy do we need for communication?

Mechanisms to support openness
Enabling the (dynamic) setting of caching policies
Support of different trust levels for mobile code
Provisioning of adjustable QoS parameters per data stream
Provisioning of various encryption algorithms

The hard coding of policies often simplifies administration and reduces the complexity of the system.
However, it comes at the price of less flexibility.

20

Confidentiality:
Integrity:

Security in Distributed Systems - Security Objectives

Foundational security objectives
Information is only passed on to authorized parties.
Changes to the values of a system may only be made in an authorized manner.

Together with the third security objective: availability, these three protection objectives form the CIA triad
of information security: Confidentiality, Integrity, and Availability.

21

A distributed system that is not secure is not reliable.
Observation

Authentication:
Authorization:
Trust:

Security in Distributed Systems -
Authorization, Authentication, Trust

Process for verifying the correctness of a claimed identity.
Does an identified unit have the correct access rights?
A component can be certain that another component will perform certain actions in
accordance with expectations.

22

Security - Encryption and Signatures
It is essentially about encrypting and decrypting data (X) with the help of keys.

E(K,X) means that we encrypt the message X with the key K.

D(K,X) denotes the inverse function that decrypts the data.

Symmetric Encryption
The encryption key is identical to the decryption key; the same key K is used for both operations.

X = D(K,E(K,X))

Asymmetric Encryption
We distinguish between private (PR) and public keys (PU) (PU PR). A private and a public key
always form a pair. The private key must always be kept secret.
Encrypting Messages
Alice sends a message to Bob using Bob's public key.

Signing Messages
Alice signs () a message with her private key.

23

≠

Y = E(PUBob, X)
X = D(PRBob, Y)

S

Y = E(PRAlice, X)
X = D(PUAlice, Y)

Security - Secure Hashing
A secure hash function Digest(X) returns a character string of fixed length (H).

Any change - no matter how small - to the input data results in a completely different character string.
With a hash value, it is mathematically impossible to find the original message X based on Digest(X).

Signing Messages
Alice signs a message X with her private key. Bob checks the message X for authenticity:

Sicheres Hashing ≘ Secure Hashing

24

Alice:[E(PRAlice, H = Digest(X)), X] Bob:D(PUAlice, H)
?
= Digest(X)

Question
1.1. Encryption with Public-Private Keys/Asymmetric Encryption
If Alice sends Bob a message encrypted with Bob's public key, what security problem could arise?

25

Scalability
26

Scalability in Distributed Systems
We can distinguish at least three types of scalability:

Number of users or processes (size scalability)
Maximum distance between nodes (geographical scalability)
Number of administrative domains (administrative scalability)

Scalability in terms of size can often be achieved by using more and more powerful servers that are
operated in parallel.
Geographical and administrative scalability is often a greater challenge.

27

Analysis of the Scalability of Centralized Systems
A centralized service can be modelled as a simple queuing system:

Request Response

(waiting) Queue Process

Assumptions
The queue has an infinite capacity, i.e. the arrival rate of requests is not influenced by the current length of
the queue or by what is currently being processed.

Arrival rate of requests:
 (requests per second)

Processing capacity of the service:
 (requests per second)

Proportion of time with x requests in the
system:

(1-(7/10))*(7/10) x

(1-(4/10))*(4/10) x

(1-(1/10))*(1/10) x

0

0,2

0,4

0,6

0,8

1,0

0 1 2 3 4 5

0,08

0,10

0,12

0,14

0,16

2

Requests in process and in queue
For example, the proportion of time in which the computer is idle (i. e.) is : 90 %, 60
% and 30 %.

U is the proportion of time in which a service is utilized:

Average number of requests:

Average throughput:

For an infinite geometric series with the quotient U applies:

λ

µ

px = (1 − λ

µ
)(λ

µ
)x

p0

x = # Anfragen im Sys.
Note

px = (1 − λ

µ
)(λ

µ
)x

U = ∑
x>0

px = 1 − p0 = λ

µ
⇒ px = (1 − U)U x

N̄ = ∑x≥0 x ⋅ px = ∑x≥0 x ⋅ (1 − U)U x

= (1 − U) ∑x≥0 x ⋅ U x = (1−U)U
(1−U)2 = U

1−U

X = U ⋅ µ

utilized

+ (1 − U) ⋅ 0

unused

= λ

µ
⋅ µ = λ 

Representation of the average number of requests in the system depending on the utilization U:

0

10

20

30

40

50

0 0,2 0,4 0,6 0,8 1,0

5

10

15

20
0,8 0,9

The response time is the total time taken to
process a request

with for the average service time.
μ = 2

μ = 10

0

10

20

30

40

50

0 0,2 0,4 0,6 0,8 1,0

2

4

6

8

10

0,8 0,9 1,0

If U is small, the response time is close to 1, i.e. a request is processed immediately.

If U increases to 1, the system comes to a standstill.

28

∑
k≥0

k ⋅ U k = U

(1 − U)2

R = N̄
X

= S
1−U

⇒ R
S

= 1
1−U

S = 1
µ

Problems of Geographical Scalability
Many distributed systems assume synchronous client-server interactions and this prevents a transition
from LAN to WAN. Latency times can be prohibitive if the client has to wait a long time for a request.
WAN connections are often unreliable by nature.

29

Problems of Administrative Scalability

Exception
Various peer-to-peer networks [1] where end users collaborate rather than administrative units:

File sharing systems (e.g. based on BitTorrent)
Peer-to-peer telephony (early versions of Skype)

[1] Here, "peer" is to be understood as a network of equal computers.

30

Conflicting guidelines in terms of usage (and therefore payment), administration and security.
Observation

Grid computing: shared use of expensive resources across different domains.
Shared devices: How to control, manage and utilize a shared radio telescope designed as a large-scale
shared sensor network?

Example

Approaches to achieve Scaling
Hiding communication latencies through:

Use of asynchronous communication
Use of separate handlers for incoming responses

Partitioning of data and calculations across multiple computers.
Relocation of calculations to clients
Decentralized naming services (e.g. DNS)
Decentralized information systems (e.g. WWW)

31

However, this model is not always applicable.
Observation

Shifting Calculations to Clients

www.xyz.com

www.xyz.com

validate
form data

Name: Michael Meier
Email: m.meier@dhbw.de

process
form data

process
form data

ServerClient

{
“name” : “Michael Meier”,
“email” : “m.meier@dhbw.de”
}

simplified(?) validation
of form data

Name: Michael Meier
Email: m.meier@dhbw.de {

“name” : “Michael Meier”,
“email” : “m.meier@dhbw.de”
}

validate
form data

32

Scaling via Replication and Caching
Use of replication and caching to make copies of data available on different computers.

replicated file servers and databases
mirrored websites
Web caches (in browsers and proxies)
File caching (on server and client)

33

Challenges of Replication
Multiple copies (cached or replicated) inevitably lead to inconsistencies. Changing one copy means that
this copy differs from the others.
To achieve consistency, global synchronization is required for every change.

The extent to which inconsistencies can be tolerated is application-specific. However, if these can be
tolerated, then the need for global synchronization can be reduced.

34

Attention!
Global synchronization rules out solutions on a large scale.

Parallel Computing
Multiprocessor

M

P

M M

PPP

Shared memory

Interconnect

Multicomputer

M

P

M M

PPP

Private memory

Interconnect

M

Distributed high-performance computing began with parallel computing.
Distributed systems with shared memory (i. e. multi-computers with shared memory) as an alternative
architecture did not fulfil the expectations and are therefore no longer relevant.

35

Amdahl's law - Limits to Scalability
Solving fixed problems in the shortest possible time

It models the expected acceleration (speedup) of a partially parallelized/parallelizable program relative to
the non-parallelized variant.

1/((1-0.5)+(0.5/x)) (50% can be parallelized)
1/((1-0.99)+(0.99/x)) (99% can be parallelized)
1/((1-0.90)+(0.90/x)) (90% can be parallelized)

x=1;y=1

Sp
ee

du
p

0

2

4

6

8

10

12

14

Number of CPUs
0 10 20 30 40 50 60 70 80 90 100

0

1

2

0 2 4 6 8

36

Example: Booting a computer. To what extent can more CPUs/cores shorten the time?

Definition

 = Number of CPUs
 = Degree of parallelisation in percent
 = Speedup

Note
C

P

S

S(C) = 1
(1−P)+ P

C

Gustafson's Law - Limits to Scalability
Solving problems with (very) large, structurally repetitive data sets in fixed time; the serial part of the
programme is assumed to be constant.

Beschleunigung (Speedup) eines parallelisierten
Programms relativ zu der nicht-parallelisierten
Variante:
S(C) = 1 + P(n) · (C-1)

37

Create the weather forecast for the day after tomorrow within the next 24 hours. To what extent can the precision of the
forecast be improved by using more CPUs/computers?

Example

:
:

:

Number of CPUs
Degree of parallelisation as a function of the
problem size n

Speedup

Note
C

P

S

Let the degree of parallelization for a relevant problem size n be 80 %. This results in a speedup of (1 +

0.8 · 3) = 3.4 for 4 CPUs, a speedup of 6.6 for 8 CPUs and a speedup of 13 for 16 CPUs.

Example

Exercise
1.2. Compute Speedup
You are a pentester and you try to penetrate a system by attacking the passwords of the administrators. At
the moment, you are using 2 graphics cards with 2048 compute units each. The serial part of the attack is
10 %. How high is the speedup you can expect, if you add two more comparable graphics cards with
another 2048 compute units per GPU?

38

The attacks are highly parallelizable and effectively depend on the number of CUs. The graphics cards are
able to accelerate the attacks effectively.

Background

2. Requirements on Distributed Systems
39

Dependability of Distributed Systems

Dependability ≘ Verlässlichkeit

[2] Components are processes or channels.

40

A component[2] provides services to its clients. For that, the component may in turn require services
from other components and therefore the component is dependent on another component (depend).

Dependencies

A component C depends on if the correctness of the behavior of depends on the correctness of the
behavior of .

Definition
C∗ C

C∗

Requirements on the Reliability of Distributed Systems
Requirement Description
Availability The system is usable.
Reliability Continuity of correct service provision.
Safety Low probability of a catastrophic event.
Maintainability How easily can a failed system be recovered?

41

Attention!
Security ≘ Sicherheit
Safety ≘ Sicherheit

Safety refers to the safety of people and property, while Security refers to the security of data and
information.

Reliability:
Availability:

Reliability vs. Availability in Distributed Systems
Reliability R(t) of the component C

Conditional probability that C worked correctly during if C worked correctly at time T = 0.

Traditional Metrics
Mean Time to Failure (MTTF):

The average time to failure of a component.
Mean Time to Repair (MTTR):

The average time it takes to repair a component.
Mean Time between Failures (MTBF):

MTTF + MTTR = MTBF.

How likely is it that a system will work correctly?
How likely is it that a system will be available at a given time?

MTBF vs. MTTR

If the MTTF of a component is 100 hours and the MTTR is 10 hours, then the MTBF is = MTTF +

MTTR = 100 + 10 = 110 hours.

42

[0, t)

MapReduce - Programming model and
Middleware for Parallel Computing

MapReduce is a programming model and a corresponding implementation (a framework originally
developed by Google) for processing very large amounts of data (possibly TBytes).
Programs implemented with the help of MapReduce are automatically parallelized and executed on a
large cluster of commodity hardware.

43

Responsibility of the runtime environment:
Partitioning the input data and distributing it to the computers in the cluster.
Scheduling and execution of the Map and Reduce functions on the computers of the cluster.
Error handling and communication between the computers.

Not all kinds of computations can be performed with the help of MapReduce.
Hint

MapReduce - Visualization of an Example

House Mouse goes out

House Mouse goes

Mouse goes out

House, 1
Mouse, 1
goes, 1
out, 1

House, 1
Mouse, 1
goes, 1

Mouse, 1
goes, 1
out, 1

House, (1,1)

Mouse, (1,1,1)

goes, (1,1,1)

out, (1,1)

House, 2

Mouse, 3

goes, 3

out, 2

House, 2

Mouse, 3

goes, 3

out, 2

Input OutputReduction

Aggregation
and

Partitioning

Splitting
up the
input Mapping

Mouse goes out

House Mouse goes out

House Mouse goes

Here it is the calculation of the frequency of words in a very large data set.
Another canonical example is the calculation of an inverted index. I. e., the mapping of words to the
documents/webpages in which they occur.

44

Exercise
2.1. Availability and Failure Probability
Consider a large distributed system consisting of 500 independent computers which fail independently of
each other. On average, each computer is unavailable for twelve hours within two days.
a. Determine the intact probability of a single computer.
b. A data set is replicated on three computers for reasons of fault tolerance. What is its average availability

when we try to access it?
c. On how many computers do you have to store this data set so that the average availability is 99.999%?
d. For how many minutes per year (with 365 days) is it not possible to read the data set, when we have an

average availability of 99.999%?

45

3. Classification of Distributed Systems
46

Cluster Computing
A group of high-end systems connected via a LAN.

Man
ag

em
en

t N
od

e

Compute
Node

High-speed
Interconnect

High-
performance

Filesystem

The individual computers/compute nodes are often identical (hardware and software) and are managed by
a management node (management node).

47

Grid Computing
Continuation of cluster computing.

Many heterogeneous nodes scattered over a wide area and across several organizations.
The nodes are connected via the WAN.
Collaboration takes place within the framework of a virtual organization.

(Volunteer) Grid Computing - Examples:
https://scienceunited.org
https://einsteinathome.org

48

Collective Layer:
Applications:

Basic Architecture for Grid Computing
Applications

Fabric Layer

Collective Layer

Connectivity-
 Layer

Resource-
 Layer

Fabric layer:

Connectivity layer:

Resource layer:

Provides interfaces to local resources (for querying status and
capabilities, locking, etc.)

Communication / transaction / authentication protocols, e.g. for
transferring data between resources.

Manages a single resource, e.g. creating processes or reading
data.

Manages access to multiple resources: discovery, scheduling and replication.
Contains actual grid applications in a single organisation.

Auffindung ≘ Discovery
Einplanung ≘ Scheduling

49

Vision:
Idea:

Main Application:

Peer-to-Peer-Systems
"The network is the computer." There is a database that is always accessible worldwide.
No dedicated clients and servers, each participant (peer) is both provider and customer.
Self-organising, without a central infrastructure (coordinator, database, directory of
participants).
Each peer is autonomous and can be offline at any time, network addresses can change
at will.
File-Sharing-Systems (in particular BitTorrent)

The peak of classic peer-to-peer systems was in the 2000s.
✓Advantages of P2P systems are: cheap, fault-tolerant, dynamic, self-configuring, immensely high storage

capacity, high data access speed.
Problems of P2P systems are: start-up, poorly connected, low performance peers; free riders; copyright
problems.

50

Cloud-Computing

Variants
Public Cloud (z. B. Amazon EC2, Google Apps, Microsoft Azure, …)
Private Cloud
Hybrid Cloud

Virtual Private Cloud

✓Advantages of cloud computing: costs, up-to-dateness of data and services, no in-house infrastructure
required, support for mobile participants
Problems of cloud computing: security and trust, loss of in-house expertise, handling of classified data.

One way out could be homomorphic encryption, which makes it possible to perform calculations on
encrypted data.

51

Cloud computing refers to the provision of computing power, storage and applications as a service. It is
the continuation of grid computing.

Definition

(The private cloud is supplemented by a public cloud if required).

Serverless Computing
Serverless Computing enables developers to create applications faster, as they no longer have to worry about
managing the Infrastructure.
✓The cloud service provider automatically provides, scales and manages the infrastructure required to run

the code.
Vendor-Lock-In
Cold-boot latency

Debugging and Monitoring

Cost-transparency/-management

52

Time until the first code is executed can be longer, as the serverless functions are only instantiated when required.

Traditional tools and methods can no longer be used.

The costs of serverless computing are difficult to predict and control.

4. Challenges in Developing
Distributed Systems

53

Application Integration
Typical enterprise applications in companies are networked applications and establishing interoperability
between these applications is a major challenge.

Basic Approach
Clients combine requests for (different) applications, send them, collect the responses and present a
coherent result to the user.

Modern Approach
Direct communication between applications leads to the integration of enterprise applications (Enterprise
Application Integration (EAI)).

A networked application is an application that runs on a server and makes its services available to remote
clients.

54

Transactions at Business Process Level

two
independent
 databases

Transaction

Airline DB Hotel DB

Subtransaction Substransaction

„All or nothing.“

Atomic:
Consistent:
Isolated:
Durable:

Primitive Description
BEGIN OF
TRANSACTION Indicates the start of a transaction.

END OF
TRANSACTION

Completes the transaction with an
attempt to COMMIT.

ROLLBACK OF
TRANSACTION

terminate the transaction and restore
the old status.

READ Reading data from (e.g.) a file or a
table.

WRITE Writing data (e.g.) to a file or a table.

ACID-Properties:
happens inseparably (seemingly)
no violation of system invariants
no mutual influence
after a commit, the changes are permanent

55

Transaction Processing Monitor (TPM)

Server

Server

Server

TP MonitorClient
 Application

Request

Reply

Reply

Request

RequestRequest

Reply Reply

Transaction

When you implement microservices, the use of TPMs and 2PC for the purpose of coordinating business
processes is often not the first choice.
Nevertheless, distributed transactions are an important part of distributed systems and Google, for
example, has developed Spanner, a solution that enables transactions on a global scale (Global Consistency).
(https://cloud.google.com/spanner?hl=en and https://www.youtube.com/watch?v=iKQhPwbzzxU).

56

The data required for a transaction is often distributed across several servers.
A TPM is responsible for coordinating the execution of a transaction.

Observation

Remote Procedure Call (RPC):

Message Oriented Middleware (MOM):

Middleware and Enterprise Application Integration (EAI)
Middleware enables communication between applications.

Serversidee
 Application

Middleware

Client
 Application

Client
 Application

Serversidee
 Application

Serversidee
 Application

Requests are sent via a local procedure call, packaged as a message, processed,
answered by a message and the result is then the return value of the procedure call.

Messages are sent (i. e. published) to a logical contact point (i. e. message broker) and
forwarded to applications that subscribe to these messages.

57

File transfer:

Shared database:

Remote Procedure Call (RPC):

Messaging:

How can application integration be achieved?

Technically simple, but not flexible:
Determine the file format and layout
Regulate file management
Passing on updates and update notifications

Way more flexible, but still requires a common data schema in addition to the risk of a bottleneck.

Effective when execution of a series of actions is required.

Enables temporal and spatial decoupling compared to RPCs.

58

5. Modern Distributed Systems
59

Ubiquitous computing:

Mobile computing:
Sensor/Actuator Networks:

Distributed Pervasive/Ubiquitous Systems

Distributed Pervasive/Ubiquitous Systems ≘ verteilte, allgegenwärtige/alles durchdringende Systeme
Modern distributed systems are characterised by the fact that the nodes are small, mobile and often
embedded in a larger system. The system embeds itself naturally in the user's environment. Networking is
wireless.

Three (overlapping) subtypes

ubiquitous and always present; i. e. there is constant interaction between the system and
the user.
ubiquitous; the focus is on the fact that devices are inherently mobile.

ubiquitous; focus is on actual (collaborative) sensing and actuation.

60

Distribution:
Interaction:
Context awareness:

Autonomy:

Intelligence:

Ubiquitous Systems - Key Elements
The devices are networked, distributed and accessible without barriers.
The interaction between users and devices is highly unobtrusive.

the system knows the user's context in order to optimize the interaction.
The devices work autonomously, without human intervention, and manage themselves
independently to a high degree.
The system as a whole can handle a wide range of dynamic actions and interactions.

61

Mobile Computing - Characterizing features
A variety of different mobile devices (smartphones, tablets, GPS devices, remote controls, active ID cards).
Mobile means that the location of a device can change over time. This can, e. g., have an impact on local
services or accessibility.
Maintaining stable communication can lead to serious problems.

62

The current status is that mobile devices establish connections to stationary servers, making them in
principle clients of cloud-based services.

Observation

Mobile Cloud Computing

Mobile devices

Cloud of servers
63

Mobile Edge Computing

Cloud of servers

Mobile devices

Nearby edge
data center

64

Sensor Networks
The nodes to which sensors are attached:

"many"
simple (low memory / computing / communication capacity)
often battery-operated (or even battery-free)

Operator’s
site

Sensor data is
sent directly
to operator

Sensor network

65

Sensor Networks as Distributed Databases

Operator’s
site

Sensors send
only answers

Sensor network

Query

Each sensor can
store and process

data

66

The Cloud-Edge Continuum
more

Cloud Computing

Edge Computing

Internet-of-
Things

more

less

less

Reliable connectivity
Computing power

Data storage
Data longevity

Reliability
Latency

Support for Mobility
Geographical Distribution
Location Awareness
Responsiveness
Context Awareness
Interactiveness
Devices

67

Pitfalls in Developing Distributed Systems

Incorrect (and often hidden) assumptions
The network is reliable
The network is secure
The network is homogeneous
The topology does not change
The latency is zero
The bandwidth is infinite
The transport costs are zero
There is only one administrator

68

Many distributed systems are unnecessarily complex due to incorrect assumptions and architectural and
design errors that have to be rectified later.

Observation

