
Dozent:
Kontakt:
Version:
Quelle:

Slides/Script:

Reporting errors:

RESTful Web Services
A brief introduction.

Prof. Dr. Michael Eichberg
michael.eichberg@dhbw.de
1.0
(teilweise) RESTful Web Services; Leonard
Richardson & Sam Ruby; O'Reilly

https://delors.github.io/ds-introduction_to_rest/folien.en.rst.html
https://delors.github.io/ds-introduction_to_rest/folien.en.rst.html.pdf
https://github.com/Delors/delors.github.io/issues

1

https://delors.github.io/cv/folien.de.rst.html
mailto:michael.eichberg@dhbw.de
https://delors.github.io/ds-introduction_to_rest/folien.en.rst.html
https://github.com/Delors/delors.github.io/issues
https://delors.github.io/ds-introduction_to_rest/folien.en.rst.html.pdf

What is a Web Service in the context of RESTful Web Services?
Traditional view
A Web Service is simply a web page that can be requested and processed by a computer.
A Web Service is a "web page" that is to be consumed by an autonomous programme - as opposed to a web
browser or similar UI tool.

2

REST[1]

▫

REST = Representational State Transfer
(Essentially a set of design principles for judging architecture; an architectural style).

▫

Resources are identified by uniform resource identifiers (URIs)

▫

Resources are manipulated by their representations

▫

Messages are self-describing and stateless

Of secondary importance:

▫

Multiple representations are accepted or sent

▫

"Hypertext" represents the application state

[1] REST was described by Roy Fielding in his dissertation.

3

A possible architecture for RESTful web services
Resource-oriented Architecture (ROA)

▫

Information about the method is included in the HTTP method.

▫

Scoping information is included in the URI.

(I. e. which data is affected.)

REST-Style

▫

Client-server

▫

stateless

▫

Cached

▫

Uniform Interface (HTTP Methods)

▫

Multi-layered system

4

GET:
POST:
PUT:
DELETE:

HTTP:

URI:
Representation:

RESTful Web Services - Foundations
the underlying stateless transport protocol:
Essential methods:

sideeffect-free requests for information
adding new information (without specifying the target URI)
idempotent update or creation of new information at the given URI
idempotent deletion of information

used to find resources
JSON, XML, SVG, WebP, XML, ...

5

Two Types of State

6

Application State / Session State

▫

"State" refers to Application-/Session State
The application state is the information necessary to understand the context of an interaction

Authorization and authentication information are examples of application state.

▫

Maintained as part of the content transmitted from the client to the server and back to the client. I. e. the
client manages the application state.

▫

Thus, any server can potentially resume the transaction at the point where it was interrupted.

1

Resource State

▫

The resource state is the type of state that the S in REST refers to.

▫

The stateless restriction means that all messages must contain the entire application state (i. e. we
effectively have no sessions).

2

Multiple representations

▫

Most resources only have a single representation.

▫

REST can support any media type; JSON is the standard.

(HTTP supports content negotiation.)

▫

Links can be embedded and reflect the structure with which a user can navigate through an application.

7

Simple/first tests for RESTfulness

▫

Can I use a GET to retrieve the URLs I have POSTed to?

▫

Would the client notice if the server...

▫

is restarted at any point between requests

▫

is reinitialized when the client makes the next request.

8

Resource modelling

▫

organize the application into URI-addressable resources (discrete resources should have their own stable
URIs).

▫

use only the standard HTTP messages - GET, PUT, POST, DELETE and PATCH - to provide the full
capabilities of the application

HTTP methods
GET is used to query resources.
PUT is used to create a resource or update it if you know the URI.
POST is used to create a new resource. The response should then contain the URI of the created resource.
DELETE deletes the specified resource.
The difference between PUT and POST is that PUT is idempotent: a single or repeated calls have the same
effect (i. e. a repeated call has no side effect), while successive identical POST calls can have additional
effects, such as the repeated transfer of an order/the repeated creation of a message.
A PATCH request is regarded as a set of instructions for changing a resource. In contrast, a PUT request is a
complete representation of a resource.

9

Quelle:

Example Application del.icio.us

https://www.peej.co.uk/articles/restfully-delicious.html

del.icio.us enables us:

▫

to get a list of all our bookmarks and filter this list by tags or date and to limit the number of retrieved
bookmarks

▫

to retrieve the number of bookmarks created on different days

▫

to retrieve when we last updated our bookmarks

▫

to retrieve a list of all our markers

▫

to add a bookmark

▫

to edit a bookmark

▫

to delete a bookmark

▫

to rename a bookmark

10

https://www.peej.co.uk/articles/restfully-delicious.html

Bookmarks:
Tags:
[username]:

Example Application del.icio.us: Resources
http://del.icio.us/api/[username]/bookmarks
http://del.icio.us/api/[username]/tags
is the username of the user whose bookmarks we are interested in

11

Example Application del.icio.us:
Repräsentation von Ressourcen
We define (in this example) some XML document formats and media types to identify them:

Mediatype Description
delicious/bookmarks+xml list of bookmarks
delicious/bookmark+xml one bookmark
delicious/bookmarkcount+xml number of bookmarks per tag
delicious/update+xml time at which the bookmarks were last updated
delicious/tags+xml list of tags
delicious/tag+xml a tag

12

URL:
Method:
Querystring:

Return value:

Example Application del.icio.us: Query Bookmarks
http://del.icio.us/api/[username]/bookmarks/
GET
tag = Filter by tag
dt = Filter by date
start = The number of the first returned bookmark
end = The number of the last returned bookmark
200 OK & XML (delicious/bookmarks+xml)
401 Unauthorized
404 Not Found

13

Example application del.icio.us:
Query bookmarks - example response
GET http://del.icio.us/api/peej/bookmarks/?start=1&end=2
 1

<?xml version="1.0"?>

<?xml version="1.0"?>
 2 <bookmarks start="1" end="2"
 3 !"xt="http://del.icio.us/api/peej/bookmarks?start=3&end=4">
 4 <bookmark u!#="http://www.example.org/one" tags="example,test"
 5 h!$f="http://del.icio.us/api/peej/bookmarks/a211528fb5108cddaa4b0d3aeccdbdcf"
 6 ti!%="2005-10-21T19:07:30Z">
 7 Example of a Delicious bookmark
 8 !"bookmark>
 9 <bookmark u!#="http://www.example.org/two" tags="example,test"
10 h!$f="http://del.icio.us/api/peej/bookmarks/e47d06a59309774edab56813438bd3ce"
11 ti!%="2005-10-21T19:34:16Z">
12 Another example of a Delicious bookmark
13 !"bookmark>
14 !"bookmarks>

14

URL:
Method:
Return value:

Example application del.icio.us:
Information about a bookmark

http://del.icio.us/api/[username]/bookmarks/[hash]`
GET
200 OK & XML (delicious/bookmark+xml)
401 Unauthorized
404 Not Found

15

Example application del.icio.us: Information
about a bookmark - Example response
GET http://del.icio.us/api/peej/bookmarks/a211528fb5108cdd
 1

<?xml version="1.0"?>

<?xml version="1.0"?>
 2 <bookmark u!#="http://www.example.org/one" ti!%="2005-10-21T19:07:30Z">
 3 <description>
 4 Example of a Delicious bookmark
 5 !"description>
 6 <tags count="2">
 7 <tag na!%="example" h!$f="http://del.icio.us/api/peej/tags/example"!#
 8 <tag na!%="test" h!$f="http://del.icio.us/api/peej/tags/test"!#
 9 !"tags>
10 !"bookmark>

16

URL:
Method:
Query parameter:
Return value:

Example application del.icio.us:
Query the number of bookmarks

http://del.icio.us/api/[username]/bookmarks/count
GET
tag = Filter by tag
200 OK & XML (delicious/bookmark+xml)
401 Unauthorized
404 Not Found

17

URL:
Method:
Return value:

Example application del.icio.us:
Query when the last change was made

http://del.icio.us/api/[username]/bookmarks/update
GET
200 OK & XML (delicious/bookmark+xml) 401 Unauthorized 404 Not Found

18

URL:
Method:
Query document:
Return value:

Example application del.icio.us: Adding a bookmark
http://del.icio.us/api/[username]/bookmarks/`
POST
XML (delicious/bookmark+xml)
201 Created & Location
401 Unauthorized
415 Unsupported Media Type(if the send document is not valid)

19

Example application del.icio.us: Adding
a bookmark - example document
POST http://del.icio.us/api/peej/bookmarks/
 1

<?xml version="1.0"?>

<?xml version="1.0"?>
 2 <bookmark u!#="http://www.example.org/one"
 3 ti!%="2005-10-21T19:07:30Z">
 4 <description>Example of a Delicious bookmark!"description>
 5 <tags>
 6 <tag na!%="example" !#
 7 <tag na!%="test" !#
 8 !"tags>
 9 !"bookmark>

20

URL:
Method:
Query document:
Return value:

Example application del.icio.us: Update a bookmark
http://del.icio.us/api/[username]/bookmarks/[hash]`
PUT
XML (delicious/bookmark+xml)
201 Created & Location
401 Unauthorized
404 Not Found (new bookmarks cannot be created using put!)
415 Unsupported Media Type (if the send document is not valid)

21

URL:
Method:
Return value:

Example application del.icio.us: Delete a bookmark
http://del.icio.us/api/[username]/bookmarks/[hash]
DELETE
204 No Content
401 Unauthorized
404 Not Found

22

