Polynomarithmetik im endlichen Körper GF(2⁷)
Gegen sei das irreduzible Polynom: \(x^7 + x + 1\). Berechnen Sie jeweils das Ergebnis:
Addition: \((x^3 + x + 1) + (x^4 + x)\)
Multiplikation: \((x^3 + x + 1) \times (x^2 + 1)\)
Multiplikation: \((x^6) \times (x^5)\)
Multiplikation: \((x^5 + x^3) \times (x^4 + x + 1)\)
MTAwMDAw:JvppRjheUo3nL9FfbFSqVszh3ttJU4a8mfegj9HgN7E=:uY6q8xG9VmeNndmX:6sB6l/bhlrc7SLrDBLHbOltkvcqKNYA+SMl3M1SgYOhZlqu6plUQQY4EiKL2jfKE7U88M/CoC8cW3pT4UPKHbeaT3ArrYoN19MOq3iBk0rP3gdLWsOupQyl72qs9rjlOlxdI3fvwODJr0CoWAnBn4IhrQHrhvorgUoha58/wwoB4cCfBcArdoMvn3pviFAKG6E+6KK9F5Y6NoozVfXr8LGn/geivQFsT5UcJezeXBWHJ2vOwNDgayAiNlezLnRtb8q8LRmtpeJpeIMtd2/fX39uEcUBOCHFAc9nw1NxaYSoah9e5zQAikXchSiA/+4JA5hYR/iapo3hS3/gfUiP6RlAER8pQu8YhggSVJKBPBMMIdxAvp/muAyY0INDF11blO/9RMMNE0/6UZgE9TLEwh6SgLsIKpMhFtTf+1gU126phSZx9jBiaaneMFcHZGP39xkZo6xheOfBFHXLhBzMy9nrlLnmZebDaDHBKBF9OHl57G7I/LjFvKwRo/0UzRP7BQB6DB4GOKB734IRHk48PpxubQxTRf2Jjysw/fRmtxywCxLCM2ywhAJUG0u2Ua9iUBHnXIeaXit8TprDygakIFWzAmcmQVdINj/nWgdYDdQspDpSWWtrv3T06dgkiCFE4lFrp3WLcT+9+bH9LDNilrbx5dHjInbrWSi8ye8JNxvY430Rkw7aZqXqh/XUqrcPbemkcInzumf50UCHuThNcsGQtruqnnhgJwwXwTmWyyQcJwWzdrYeQ6WKJKUI0otQexJSl7sBAZ8oQCAo1ZvyEMYRj9k83uJxmdTM7TWCXbzOzCUIsiVQ2GQ9ieGvx+g0gWHqq1Kbk8LQe0elefDxUfj/gwVEKhvbNpamGhLKfqJUVPRfGz+R0nhpbHSj6SlOOBAdC4BCDS4qgPzHAjtCFzd82W74YT8B3Gbil3tEIS5KqK0qIdOoBbBkvpkOHzzHeogr/q1f/kbFuZ5tEvC4fgnPLDj5D3lg2Z/0NxXxqAA4/YvGyLVh6uLkYpxPIkMUO1KoujhDKe2MdaV4JxCcpeU+tICsrRri5ya39j8uGRr3+0ZGWyk6bhTvEyUi/YYXKHDogvjNJBCVEjTaEEjek9wh9C6Hloan+XfFsfLfmylZl6EpGpNFj4tTzdUgxyqtNfsQsXaacsMTsLJhrw20kNfmkUJXd9gbrtg9OAZ3iKIbEJElgUFJeCMq01aBeTRdvH5zjkKrZAUEjAMXOhrAy57M0xzgt9iYqyrxQ8OWBQ4vESVaWwEilbvUpi6ri5a3RFX9FFqpOIGdM9+jS8fLWlGgbvLB9p8X4O436vk6wgcJCzD/T68ADqai7iFHdGSZY+KL6/hwmLlB4Yfv7EL0dCgIwYQYZ9YGy9cCaiAgt83RKUzDVifYluGplaCEx8JpHD9s06icJJaLRxzn2uQWiXdCNmdvFpYv+YsUYe4/zHmbE+YO8YsvysG4UDM0lRsbvHC7TC+D9yciV7LygkRBhS8i0YX/IC6AXXopF8WqUJSIknN+/NRihzQD8peXK0X0Io1QwzspdydO+3U7Jv5TBLyzCb/kqWmS4vTT5Tgp8RM4bvIJ0fD1vEbkzYpB1qnjfrUP3AJ9ultZwOUlWyokEzsGpyM2fAh+zHI76x5uT7UaZ6khHEMji5Q3sHnw25s2//qaOmpeqLyPWrDdrcvE0qvEgp/UGYTNEGI1PYvFRaXvQsWnuWm4vlEICTN24buvub65OGySrT1AI1W3gvDoYpfmHjlETjOYVLh3/Jt1Zx5whq+rGZwTe8PXd3xGribZh5hB4XvZftZMLZFfD+NLztNB0uUr5E8tWajE3ujfSalCzNAqeIxNUshdHcBqOCDt/+2YBvs93BCWEdqILliAdaa2v7PfGpqztnC8B5PkqB1MWm92nmqOyHKO92vIRw+Wje0QmaSzsZXWKQxE/dgZwaTbaU/k1dHV6lUctL854EGDiLa6hJ0scYt6CLK+b53e0CScOroPSQcE1UM+LQxHuJRLBKugmf74zqPTea/Q9bBh0LC/6anIkXWH2iLziNRGTiAgkQcgc0NVes5Yqz7Q8LnzMih0UTdJCUVxbDp+QYTK5CPQZaoxKqWFohSQOuKtRlgeH1Zry7LKlC4XCg3PstVpa3yQzfJG/UgPpP47OslMNr3QZ24KZOb3JvGNv2U2VKMRojy/qi3uhk/TowKcgNHzrZSsHHD3IoK//wXXcJn+3anMyuPJSAMn8axP0k2wCI6vCXsDk0cWQ5Kg0EAitBaKw7df16bNHu6XCwguTyP6vN5efW79nYWzY4eY=