Einsatz von dynamischer Programmierung
Wann ist es sinnvoll, dynamische Programmierung einzusetzen?
MTAwMDAw:YAHu7Dm/r39d4dIKtH0I1AEVsx4ZMlhCmy6MebUSGGI=:KSaSgVesUA0Hi3Pd:QkZzks2PJqxbNnCqeY9N3cvgkRletq5H9KVJ/VBH3dmJK8SAHV3IhlPcqcgzsbvffQDc/y5Ds3Dt0fRVR0lUim0JfXZHOvvTkKBR3DLbzAYJzJvkuCheTRUx43h382My9ZhMcKae7Sdv2AHTJq3K0OvQGEAxXO53yNapCRrLiJr+xC4U8+bskPq9oAz3thkW17+wtxSXaXSkbiZatgR1HKOuB3R7+H/24zdY5yMiduo778uMEIRYNs5oY9jx2lteSJOF1/A/JDG0JEc6+GXcqQ4NmdRgSVZ8PsuhljBVeJe60+IEcVZAEiJxtHH8v0GQr+wDVIkRErFqmr5ckojHiz5h1DJHG5EW5oyvfrJ69DTyIdy+BgPH1tO/3bh5GruAbWRHBr6Wyn46gtE=
Minimale Anzahl an Münzen
Gegeben sei ein Betrag n und eine Liste von Münzen coins. Implementieren Sie eine naive rekursive Funktion minCoins(n: int, coins: list[int]) -> int, die die minimale Anzahl an Münzen zurückgibt, die benötigt wird, um den Betrag n zu erreichen.
MTAwMDAw:obAIyGu6zjC5SSkin6pHa2j8guT6Dp0w3Wn9MHE4hl0=:dyqIFYAqEVDfOum0:UBsilATwj1qaoJybbjXIcwY99PzYwp01bh8H7c0L8zDcveoI8maJ2BnB4fiB0EGetUsKhXEXSqgRiWDC7KEfkPZR+jM9+JJAJUIgPFnUjSxSXKmw7EY6ddvj1E3vxKTN1KNlEAM8qHd6RuETZiXwRzkNg13F2ybrEnBz7lHSJ+up352J/yMoC/1gNakAaD0n91TFnH6t+0GyUpKpUlrjL0IC3AKMJ2QNUJzyJJkn4pR7tLrWQInlatIIpLGZ3j8u+tSP/nb74WzWdvBOSEmcYhGO/piRGxUfaUtYkorQl4pVVQaVjaudnR/iBjxZQ5/pRaeflPgDwBojBcYzSwnb0ICV7NgkJijUBjP4VbRzU5CpyYUeRD5tGYFk2RY5wH4lffTGXCLvZIZpk76saOrrd+kLK8/+QZA3+3U2u2G4IKwk+2OR4Hfawd+EDXVOksqLft6duzvBAduBPLGH3T7jASTWjSYNOPWZIRTkHk3rBKz8VUVsaIUcl4luxxe82SBIlZlnQQnJH7heZPgpa+9b1PXoWf3F97qPIbHDufK+9vMbd/GRA3mk9J2eJTtOFu3WH76DARHjUlBSN1JdZaUz9SgmF2vuR5Uxhcus7sCxqrT96npLrQYnoq3YIpR+kqr2Qt0AaOWZdSDOwKFlGI7qA29p+IA4ftBliz9lVrZgVyZk82PdtO1I3rfIt+CfS0YQyVUAmFLjwMuBA+5w3zjg5Lx5XFv6inxxafIFXtxZ6IOkGEVCyFfa1iAwgKWgDGYLyVRy8bnD7CN+NHfCeb5wD/t4D5caCczH8OE6PEmD3NAkprFZlOM5ovkY5eVKbj9BKpOq6ns+nAaZcmGoJQ+z6Yv31D06LYoJyEpD5fKPGLSVf0/emIn1eHv+UTTgKJbEsjxJt32EfOAODmm/7WvEIHgNLkHkrT++EHsSbcITkdmpPgvTHHgypuINXf5LX/favQBllEOJmCFY/Ua1t6upAZgdt317EXQGxCKbRCUtxBqIfAkSlIRPuU+Wb68FvaqiZ6xW/uXkIkvU/WnzyO8t57fj0pvFvrQi4tNJUurDISkDQ/dbyHi7M2+E+9l8Zs1dDarGmZzkvJuvmc6T2VJXwA94PcpELUArniT9GUO67dBJ8kb/UXN54uiQ5scM0hlbwz5JEycFSjiRikqQiierDm8QzmXRqjszUnKR33k8MCE6lud0wmpiIPOM/ddikjudSrm88tlLn3jaLB7axdnfO298Y3k83wXMx7HcvrZWC7yJFBYrLtFePlTGJpvfLOJ9BpdJjv0yy4D3tE7693FBTvCj0p+Set/uqKzhSJkxG6o/3W3BVExkxzmSO4XpcxgmPu4N+OlELolFnAKXyNEv4FRf4aQpnsrw+kdwzyQXgqfq6vfmF0TB1yWeL53bkzKOPz3Z5TKUIKdM0NFbIjKtEBJ1EYVwh+m/6YK90DDHmMO3enOjUVm7kKeal5VH4e2AjQ/1cYe/hQK3YzB2gKLNnvu9f4xj0BLwiaj3Lo2N1ydrJbIn/ekj3VieGNdOeS7NnpAJvBHnswelO6CrNcGU24eoeixyUPtYqK6exL71yepdXXy4i1XjHN/2BNRJPSvFyjLHCoPdkpJSwcQJ4af1TP3SFc4EedQTvN9E3LmomgF4M9J8Ob6ZVBYkBBkmu+i+7btxkrAuv04Xgl27G3Q4qCdqfk6CboaVfBDAEj9U97mQNHoYhVR20VTsqBVd9S+9qGbH1tqE4mBdMHLjy9IzSN+vMkidPZr2WoL3X+cSeWTGpZrFLGXDoV/w6HAVCxziBbYWBkhdwW5qCd7DlDJVZuGloMhm7jgIgV0mks4uWa4mlQ3pGNyRc8NOe9VAcmJbS+dbiZ4y0RvbpHmbpyHxRnOTukETLQMjySKbwy2U3LJIjTwWt6JGgzQsbvL0daz42XjbHTqX/SeJFagjGfrcxUZOqC4XmvrK7eSBHye5uINOhn49iqT6ZmmdD7ku9TghB+KqAvZ14YmIPXtLic057uK6rVCj3qpeavhvn2/KF61DDbixNJXp/HenUCTvusgqasW4mKOvIif7ZupmA9vkw3K95knHLqNxlXv2XMaV1mAR8t+TQiK5/UGGklMatoup3X7RItH0BOFtQjntbN4DjR19u5PFE3d2WOTDkADs5WmSUlTDDkTFViNa9lkhKdQPQbmmnf7zUklUATxhX3Zd91BYruh9SkRavaJbSeBHfsvhiIm77vaIxtA0L7Wd4vCvIhAARfqq4lNX8A5sg792loJHjvOPyu8D2HRXUpCltZR0tB1mafslOTeKVDRQLYrml5BRQEBb4EE0rLr3vYrHPDxd797/oD+rvsnKOWskKjqyBOktee932AHr0AMWULGWQFuf9LRTc3cUUibjeIz9aOAuLsuWvEKG1Bc28Kl/TsJIosEFqwrxhIgTQz+AV9V9cvtNJ6vtowJLWslWi3d8uElvx27vtuU6dd0UnOVDz59tTeOi6ZIO6X8uwrRbCve/OUZvd+i3ph5i9RGFiI/+0GLGYit/GUKRQk0yTFlebwmkCsa9uQ5OFHEvw5bTLjadA9Sq+s1Q8sqCpxa+MdzOXaIBCgEj0UIfSv0qpkx2sULIlcrnxacI8s+6PH/OkNKxczBHVhmaeweX1xqMMQjHG03bJ3ALwb4XJwFntDlV6dq4U1sltBPDP9H5TdDGhX3Cbl3oL5owdR9kNHYTbeMEirpbJzF+RYZPwlFDFXyXIjVsfrW02dN5Ydbyosqmi3pQmrNCUjCmNiQfdncFH9U7wtsCTE8T8hYvLcC4tsEW4piDuxNsJxeVqC1vftDETaQOm4mNf9Jj41hrAYfU6WoBvpQeyfvrHD8izYh9Tzjw1BuSihzNdfUpamw7zbbfUdt70sQmkwwHwI8O4il+i8lgt2ZHAS6pE5x51+4IcKH6uHF5aDxAKZfZYfoTFNXUg4tQSdeM/MQG28jvVoS7ZgV6ptpnH5aG0tzWSQJlecmh+4EWkmxv7v8r9Jvlmy8RwixtFcri21ZVG1yMOAIR8Em5UziYLL+dZKuPJ1hG/v+4zApCkaFdlNU4ngXILrhsz+222ljyfURdNg362McKNWJ9v1R5Mu0y7FG6odNDUpZs9BSNvUVwqhDPRt7NtYwdGlx0pK2V2u4vLcKVRqlL2MqDdPYP7iRGgosJdAmq2YuM2VAPzre1YH6iuIxptXh6cO7k0G0Vms/Afnzvx2pK0ijfVgXI807IKgO2X0yinsUlVYnEbShwUsk4zPmAL5ok/do11/DjkVLfN+rO6khFQoBugbe2cQ+qdirrSMi/LZQuEMftXy9IHHDChhkCL/QFyNCJHjki9IxtNuzLhBLY76ma12K4Iq8R6umwhE8uRNK9UZ7jyK6FnUOPCziKxIOO3V0SuhnsVw+wECigrvlok9y+Gw+Y8j62NkMR70K9rfSO9hzv9BHOGU2TCwQ/arNDT2C6y1h8FWNXnLmcaaoTHdTwEGSGFbTuyejZ/laWS6HUJUdXVBlAu17XfuvngM2iDro0Tr5FMTQZvmkX9G7zYhaCol0J+A7r6WS9VQWNtkOT8slbuBSptNEUTVvDXBdgqsyMfkak20KiUBoD0CBpKGq/JNgSRZXdJPi5yigOjhtSNb3H1dJlSKDPx54tHL5y5kA+fVGsDcyLqoJOiiAEbM+KWbQlYaRONbjGdm6WSP5b7l+SVnmYwn6RA4KdursPNL7UBgTt9ACOccqSTIhkYPM+c3rck2VDSHvN7+yFEC6Kp5a8nbKGzHtyNhygPGFTSLFQcIDwjcbSvCWfFjOEK+KRHKtsaDG9qVV6iNoaZ5StDi4/j2LQ3PHc8ISm41z1Q6FaNpDpU9b0fis2PpZEp8wWhSexIBIddtV4BqtBIt6xYRG3m3vpl3nYxu5Z21fiXC00t/dG7S38FVlWCFkbcXeXKSgUnFhb23h8NmG7uaMFr98g8BXBTNWnGQ+ytTxJMwhS86BrW8fFoBD1YAH6DSOOg1GH/R6xFFX3ShQHP7sIReJbkG1+Vfr+k9o8mpw0BFaYPA9HMcSyGWqildaNdKrCVuPY6UG61bdxBD7cSsqyvLDdbK2EJPmESNJIRg3xU+Mp150a6p7fCaqeMCNR1y7HmMA70D+czXqf66LHFN/FQBcpMc90ZzUb3oA08wdIqVwG0dgWoPxEvbhDdqTDUVeCUCPxgvZdTf2LSaZDwPODEimE45cxv5X6dklyM1MkXu/0HjBZXKCgZOVkqWWSr19tAsFlSVtCHvf9BQJSUAT6vAl49yQPgf+5ZkgqFSftfsTpxqNwkdgS4mPEclKf6X1gvYaYvcw/XMd12FcRQ7vAyiAjPd/3kzmZLRlq28FqgLOqTDHgJjN6nuQITezeasKrKQGap+I2wPYZe/xac2WlACn1Sab0YIZFzhUgL/InLjkKXEwqCWipwx5sIGwAMq8SM7voYokqllXrrJZbqkjvzTNKPWuJyS04nWpgrvljk+Z6oKL2tw9fO+00hjrhlrmiEIB8Nhr3HW4FjzMuqacWAWn0wWwXt07fQ/4GCndUyYsrXl2lz82EaEH9T+cnPrrYiil7WFvpIyZXxrSbTbMm1Jkbz8uzcokXSu8lBpq9ExGFOmJinhhFrIjNQicNdDxVONh5rUdUzd3p5FkST3gcg1bPczek8dJ584Egcn466aHHaPE/rLOG5cGcnB3SqKBh0j9iyU6QgI43JE/cGGkjvSAXomwQVOXQWKR5oMaoGdFwfipQXLgcOEkW8eA80sp/Oo2vMhQolf51x99Nf8/QnJSJgZy59AmvPMnHyoF1eULqHgXvN4eLAPk5c/LKZdiGQsZO91aG54AaN1IMalwdwlm3HtgIaWNad2H+2UBHCpgfxnZg3ft8lGb/vffihdm0yavizQ/3TPBAri3QB4385oKhEiWUgKGxriBe3IYRrw0mfRxyu8nZ1HOtBpw9ZYxrMp9Fu93o9Dl2cM+49OXv4t7uhFn+1Qg8BIuXJqHBGjF/Zf1MFxUq3ycMtFURCM/xytnBi69t7hMeKkY2lvfdiYE7lJhGFkJjuWPRI6P/5/QTqsZ4KZdezriiQjjHHEqFY2lCj/QfuYcoS7mMvJAh0TmJIQX29PzfVtVwE86ojw4tin51DRwPNEAkkSRlYA+86GIGF07v7yDuC5nIkXof5uic+Ws5FHgav5TLGvfu1VdAxswN27Yw3JGj+LkyNh8goMDe1MISykGJeJHHMn+diNJgEzo4MG9bgNAXbMPro8bro0Q9JI2jpORp3Q8RiADfmn5Hrx3hjT96MZbL/Zhy1qISYS9bqEx48KrRUfMA1OOkq06r+uey3ITCkIyj5omuAg2orJV7aeT+2kxPXXmApO6+1sMuBeTILFQGdVj8LxvBsIxam/JA8FLm2pZITuI9KXKgJPbeEX9PPLBqhxmLvHefav4y3/XGlroEDByqIWxJqrEpg2ar8r5kgqjE7Grj1I9C5YkJWuCNp5DjPuSktyv6b4yhHopkPr+AjmZX/TbmKSthbPgL/HDWWJuNRnGalWOkFd0B5ehLjSQdn/mCDZ23CpniNcT9RL/q40lNsrCN3X6hrbL9FZwjRO3WtJOzCSqcj/8UWVsOfz2Pe8w/TlHNUG2plalLrY+IU3p+Rnct7J/PRrccANPA5IZ7Zu5mnq0F/IfD81LRfjgXZKdRM+cuOHzc8XstPlEi+7yS1PXKVA2pE8/2ZxhxbtaRajkOT7Fm7VfDMlm+aNCTOkrmF+GmyvAhIheVsDtoEg9djWz8nLaZQm9ddI6isvyLUngok5esz/SkA916IqRWqzlT6Cy906e6z77bJInOxbrknJAKufslXoEVBAWrEAXo4AL1D/hhflOTjiIupKdZAxGHe1o+yju3ZVzUhriS1ZSTHQzpWZ2ECGxUumYG5v8sMA2KWvnc4ZfLug23iGTzLbSdZwGR2MBF1EqGXXsPfxH4TJbhm8pXPkn83eKpr2RO+y6SyisNGuTsu4eVel9WuX2GYlR431RU/E2A7Vlc73IMhBF3+1qCMFYcMO0fh4SS+bBkXUdMm3s1FVzeKIG/vIiCL2dw/S71kWnappd6M036c8plEQhtAD1xWPKM5XzBdkzWKnIw26EnYtNnyWIlFdw2JC+R5tk4Gox7o+cmU0MtdYRTzLXLORsLq5RJfb1Sbvx2Qx44vfELhAH0YUFv5gbyo2T58pbQHBIq394SGwHH/unKOqY22ISdtUUCubfvqW5JXykruKdw2lM5yspBALwgHBA1NzRqQrxBXHKYhLdxoQTUD2az+cnxbZ53RkHqI7o+WhHutaZPpDHBEeHOdzuShwPqOF1W0+Po+susOJfDe93Ul0ACy8Dv3Rqa3unx5gjhJLK6YQ/yZmgqH6tyW2/TnYrQIhQepRrMrdDyAPyjvOyRrlIs2DyiUHJnPy7BOkUXoXgQzMTLlMWJexuRsGLrMW/IlSXUiRIXciggozbZQ8SBratiVxgIHElPbVTKdO+I8trKQupx75PL+P/xthSQi6lnx3MmLcG7j4dp7i/DJ7rg1JmWq1dm6n9cwlaWXZKP5DPSlKNe9Jf+M9Kn9CI8b5tE9PSH2cWgxjV26sHyFshY/x9MSR61QT3AjUHpl55W5MAHioa6xtd/DWKoXTcFLmkkyuNzv0MRgjDD1ltDO3dmPGj+0i86ChqgELq8HdMdyJbhdBdZDimsySilew5Q856SO0Qi98nicDSMmtc4yLWxVqLUleTu1c1Azt9yEIpxavt+0wMT4Ys+qa9SCjY41su2FaRV6qQcXfKeiEaDlfl4ugPWUb+vi1fX8Pm8zEtXYqDe6xvmcWR7oc0zzwUbWnt/Hk+flcnpd9tSJmMc7OQ7i5+BMFboqGti5dL/3gtQRC4l4gu0Oa7u6nMfiQlUd+avOdM4xQl+6VwaEttl8rsyw9ctVMU4QWHpZhclPWlW2emFbQtzlFfbMRSuvalyq8vZK5HYXIPE3n+l+5w6IgQKVKXAP6hJpzDBhrf6C1Qv+fSaI3OYhTvjRQYJZjKYxuExlbVIlNH5G/aQNEWIs7bdeWstvmjvf/CmXr5XT7A63X4SU6JjebuguPRa+uj0xGc58Dgr8ErVOQ9Wzf4yFRD5LGKMO3i+gP89qo8rDOdkWBqAW+Y74QgINT9B2486JsKn3tRi2rMwBCAtCyztglpnHrefwaKxyg0hRkzMLNMJkpVb+qqCUnApPYFNCS47Kp7DLNO2q0sAQ/OiseW71gKQ+OBh1bUXU4OV/48kBfd1RjALYcUpc7ChXpy7QUnU+rvtnkTTSulBsPL+i1FX6fpS3WFzg0NSDdzhI2SrcVK5sJI9lhwlAi9q6S9V2v/WQ97sX9rEhyWurxDAP5bX+5ypnrBVwh+hQcPJQMG/KQKCqke9yeoyjFOJYCt8gL8j0Xsdw5iV/53vZSl22jpE3vfDYDleQm4R/Ni0ii2V9AAxIE/TGer4OW/CKsQjZGTlDzqqlsQgKT5NgpBOaZrX7MvdTMcg6Wk9G8NuxjRzlkyeVOLZcvceLhxa3CiFw7QGImur1TWVsab1U6Iw4l9PiIWTj6HYnbcexqMw07rzl0vYFrFenKUu68CoL2c18WnNLPtDUWlgmoqA81FXm3y2EcmlWDeqQzivD9dwMNGD2qjBnwezohIR3NIwBA1K9p8VpF+F2cuSKGdb/ouRoxraamyuzDbsSHmj/H15ROkFBD3IOoO1Sl5vePw2Sx5yeAHf/+E2vZgWYWP6lMSQLZKa1/Dfb94NW6juePNlcRHPVxlueVbMPqNG5hRf8BpR/g8C5XJB+LOh8qJhoIaKCn5mRO0uZhlzGkuG2ga/jDePW2IE4IAgWHvuPj7CimrOyakVGtgcFxlLRNM2VllyLaqre2BObxby4Kc81xutMPGJbjWY0uCg9pzlt/sW8vbEQevdp2itOGjdNZi6aBLjvXDazSYlJjF7+aRyobg6cTaLW2rS1r7fCaAlc57I0CB/OSeM/3wLcGjNC7WxhxpSuOXKorGPAd1GfckjYhdaO5AhdpKNeAe2ug2q3UJ5faV1URC3svvhAP9rzX1W39tFA2JdzyIuipq6lW8T7MSwjEmyhXL0M0cb8Kbuhy0wjZzEEhlcwbh/SiHd/ShN7nJrrBZZEeEy63m8FCXItPvYftp5wKXMJOC4pn/3lKKe4UZPq2H/fzDkpd2VV4QYjUijt8PVAQyHmW9PPOatpcaQTLW+BESOM2h84ApS/Sn1aTaJq0N+yVN8sIJWQ+3jigHEyJX376+FLFg69Nbn4KpDbdZHnvp3b7rnUcmILDAGZfmCAK2WSq6ox60y9aOIcoJFaJ9Ol3GsplF5i9DqLEce8qfcChLC/x25sPiFa0KZij0YlLdiL4rq7//eVY4ekadpWNHTwVZTthxuN0zIqF4yuyQq7/k+B6jx7R28lo+zr8lupUHsS7V2QzqTASITXtL1W/DUNt6NAcrneFyB9P7COKzWrchj6tFdyGdvmalY0lI63ugIZI0sItziEsdHp5nWBYjzfincwr3eqUjaH0/1JXHmhKKhAuv2OK7yxgdXwa7ePJrxrHhYQUCrvEXoXvuwgtfq1hHalYb3NWTzPukgGpmSShrYMkEZVPGtDVinJBaVEmaIJcfFfpgDN2RZK7l1+ilGrh7ii3ep/X9S5dtD
Minimale Anzahl an Münzen mit dynamischer Programmierung
Stellen Sie die Funktion minCoins(n: int, coins: list[int]) -> int so um, dass sie dynamische Programmierung einsetzt.
MTAwMDAw:SmC29fF0xs0SMQSt1s+Ms6WucmgrR/QfhAJwJspRbvM=:fhvsTCXdYeNXOcwe:JdKfnjJ0irCijHpUa5LfAzNxvKR/NNxc2d1pzt1YZI2PjuvIQGLW4Yi6NmwiJ4TpMT67Me6Hg/cVH3JGlR7R+gDi3AYVPJlHwCKY9khtxslY3vBBni21/7xtwBz8phJJmPB4ZKOR/fupjEC74p4CbgFfgXY9lVoWPRfN7ROhtZIptlXG+AHfqa/rh6uGqyL3Cj2AW8LJ+zPe8BnHVEloxFzZ6Cgc7dL0vnCGptzA4khU+mnMeEY/8GcjkjsF2AHQK5SxFV1sfeJNArC1M6/laBFYV5flCBCoLkMn6pMABrTu1tooAwdpnU4BjUpu8d3B03k/U9loLD056/nQ6xVl+6+c0o3Pgr5eLiYZ+NAdzCo7E+nlVl7Us61aBkVm68iOWe+n+StpmfosGMpX8AUOJAcZ4Q5/UnFYJ/cDnEYDVVaP0ss8ixxprkDMdJdF//cwB4Ug/bssWhfWJy6qNKHoA1Tj12N4+YYgKGZZziKh502Et3rs0yFkf8vMPvx69LM0vFDCi/3UTsvceVc+zY0tiLWH8YXVSvNjNmF7bN4z1gooBVIV0hF5Q7mgFnnBjSrtPMhYqOK9BdyTCRj2502gPypfJaeRlmEa2VGe4Ts+Y16j8E75NvrM+koACu6qEShIrhUu4VFMXcYk7Kt7pq7HTxLzyk/oBwUMvLtLmwD+sQ5O4qPkucG7Kx41vc1w5zLQObCO+um2FfpHTBbaEn9A+J83/DmLVw6IGBzCfExrFJKtlNI8YhI5FUlRcMfFBaYr9/OiarNpFOjLjOwpFfcF5hkW53ZSXHZIN3YfVABJT7HIviuwDMt5u7j7L9Dxw4KbtSClbtomxXiCp+BSUqU+fhR3vXR0oQpkeELxSiw9JBoHHIxaaV3r+3BtYDi2xHujDm1cYgSeiZgjZk9E/BZFL8YrUR6CpIf9wucY6/25Y+0NTravOBnAYyhrup+wzs1i+CHU5XDX6ZgbtA2V3UDu2ih0QFXumLpIlmEOoBz6+jLuxcxe1Eg55N8rDonpi/2WBzS2arbcVoAZRH8qG5CPE5KY07x+g7HFyWUjQjbuI7hTVgZOg7BkzNwxQjC5hkR8oeWzW1gTErbvKurC4t80vVXr7qGHA7nrKbX42fI+ihPjnBwpixZY4/JdedHKP11Gjl00Whl9qTKNTESf/eODAGOtFP40tufp3rjYiFnkrhLoJolck58k0tiUP/oU5M7hDDbEAOhtLoTrIH1PUHrtUFMtflobUe9yze1g8LWg/I/bXp4TH2Wt7QIPTxoTu5f6hHDrvbCc+v+p7Pfo0wvo5gugFoOGtELBlYJLNgXUApgT9b+XRZRWkXX50ptEp7VLBwm09Z8rYh9J0ulHKK6VqCjQQDVSIqjHVCrJ6xIz7TTJ1BwkIt/krP7YM0rn5GxCGEqe84Q7lcKSScs5bvR2OX1RTZzoVDuL9VGdmZJ3r5RmDdNfikxWgLmhDRPIZE+cRLutpkw/UvV8ntNx5+89o96dNHJq/wRpzVOgPam6g25yIyDIqJxDZARQmVVjXbEeTZLHZPFj8gOmXRX0OMVn06ouV1R9pc9U2Ytnxv91kpwqqubiKoPXcQR/iFFBDnbeZoSJKHXHHxTCWOYjvojJbfXHlqcEfWEVmXdwxshnicuSvCY16UrAJIOQ05ng5M+ZgVubM6c0aTD8NeK8gkvOrEHfDDm/oJnNih/sZ5vBiNvDNf5t5JoFzA6S5Tln7qaiav6/pbXXqTxe3anwrKPC3TxtqdcU44WLsaVn2K33LT6MfqWvQRarzR4ZUSq9pO7LuZULS3PzkIvXh9+m6ZU6wT57GRCfgZdE2ZtRq4E8b35DV/iC8tobLzWKbrXnKPK7peQl09XLKFkP7NjERoW8XSry6C6s6zThC3+Yi/rCSXRejliBmKRM2pATg+zXzAcofOBmMrnPnASQvpLahPMDUBL7BGSuEg4KDnOjJgLt6jw/Hc4GE2XyEqmAAN6a6tf57rQ3ICiq4sqcCfyZh4ThZRQya6o4T6gubCqC3QqTNtYwgDejPvJpOks/jJ3mihb5C4ki9eE75rZxleXQoBrJ1CHMw0AexAq/Ina1N1oOinSGybc8jXD+m90zsIAtWGFs7BHQIYmzOo/4fJ3jSJpj1z9p5wBjeUs5eHriFFPSP3z4neFYjg+ItOrPNOAQuCQWZmQ7oc/yhu4v6NpseoLJzk+JyrEY8QELykZOEEEPeQf2S4ZouAGnZYoFMGBch9xUzb4+hfOT3F6P3QFnW/ziFeGOKX6yBhUXFZt0JhYtBc4VCx00geH8tL4N+hZPSThmyN4xoEdlR163Swh3Mp2mMsl382Dz8jWi8A1otO/pGVAEDFoiKGUrrWpLYcYLznug7Cd4dwwNyJr9iJgtlvsIFKipKiaFav0I+nVzweu6Z6PXJmJNJLQ60qYk4YX2O5YEQXKfJAfszivSC2D/vDww8HVlv8gBW8/O3uFoX8Sr68QdNj2RBhKtHQEWz9KvnGeK+bHarJazPSOvl3gShbbr4ELJBiWgnJY82gZ+qoJGab8T6jiPoZXCmykhMADIFN9q4Df2svUlOIAMkmGY/ySyP6wPfrJWPsZr4wYILk9AW5MAbTsgp/O5WRrj1Klfvln8JlqnwY8MgtokVywSlLp/+F7Tz0lEvsxj3+d5h2xEbFjg8Kgqtu52Idbv1W+ElTDXxiMUr3Vo2+KcN0rB8IlNELatehRfrbm3G1TT6MBmDVg+FqqrcnBsT20AT+YwG7o5t2ACWyf6qt8jKUKk7S6Pl19Lahqlxfjjl2PcSK0A9P2Lu1P4QDRrrX5hOWhQFycXF7N5xo4xc8yRyMRPMxaad5Xz7VYBuwrCCMhLe0P8oJBhAcKuO3r3xfuEAwEHs/Em4nSDb1YnMNvJfF/wz2XMxK1ySV9aIXH4toeUaqIyDk0RYIF8pNAZMd+ZzajRZujambsRcn8E1gmU5gOnaN5TYWzGrBOBe/tSmygZtTi4xVcU5OWJtSwcf+Crxu0IsRZO/W2yE+oj18P6fKXmaF3eCqU0e2ajujRmHWB4nYBVVPKDEnUYhnPHh4JieewYkRn1gb90D66UYHqTCRs9QWgJMrdj8QZDTk7+a7hOzFLPL6FRwq6P0jm7OFUUZaB9AFIR6Y8ZVVKXmA9wvpij8a+0B6blNZ4bPEeRJ6/yInrXHAPyX7zoqWGZm5rP/o/T6ateCncbPbqwo2RWNSN8vh36KCSs9v3Qwdqdio4WVRDpLT9RJk+KEyOX2A5Wnvprs5yGmttXyuJ2NlFhrn5kYMIq0i4zAcvvqLUggOHrL8eOiICIU/PTLhM6ZJfFFQXIw6vuPC1eTZKY/2pSAC7DxaaTBjcKts5g5pIG5bZspA2L24K/PKl+LUMDHoT68gYhcT71BDCNbWmFnzG58zWw45a7axCZ2ueWs43JOgkXASL9AFcJLSEogseJc61ONNDAqXSWVRM2v4lb5x6HAguLMLcVmyHV5Q+V28nb01Kow6wMDd3GA57RxSMCl1+eGRYBZvyZGujXhNwG7OEwe1HvuOP6okcEPSMbrGyq3nNosxgZEiexoHjjgofCin+0BQ4UpKs+Rd+gA4vSS+kobjf4258aYADZvbpSc0CzAO2WGz/BREYVTpfU4xrmc4fP0lLDfeHzl2vlYyrS595ZivXsRDHNs6mZE4FVeaf9hjz6XT7mZP92jR0pAlqevgCAR3Q3LurnGrKvpbmwZiQfMK4ilggv2wWeE7TJsWLHyoGdk+2cs2EnJV56wdBoAMi4Mrj0nwtQmJRMTVCGI0MySAiLpAnf2qeyooXoAmJPY0yMdu56KWWeCmonYNcifklnzihcZvhuY89A/FFTZRKMjoT4GIiLe4AocVnPUa9Di0tGlein/AQHB1tssbq0eaV527iMEIXQy9vPAQ53XFVVP4FP+gvF6cSZJKJ0jJjkYALhutKCeW0gMMGkzTriU/UEcwS+M7SajTxBGbSsNO8R4sFdfBaWGMlqRa0m/hCxYWW/pnzqPRLRRut6bmEGafWQr57yC0cnxA8X5AcHEYUsjstcs9JzONNgm50YiTWlsjtxSoH4/dVyjEn+jIQJ5rXs/PfGszhlKQGf5o3QS/8jWODLRqx35YCMjySB6YD4AF8R+7w9K5HKK5VYqA0+34zS35h40v4coQB+hKs8VVW4QSzO9LTqLl092OimGuUNYTfoBWkJU9wQONOnQuvldUKagXJwdz10ViAGXWsrSNpQgiQY2qySrgxCdIrN0FMXjdgCE9IbDZkmXqLabuHTCJIjY2fwHaMdYJhi229K6Rf/eTN+KolFVtPXFIWOGPL+DLGQJTO7eBr+21Zro/8fec/V60nHNobFyAxo+bMW7WEbMXFhcKea4kIAUI33Xi+9i3kjGcP4vldeW+sJfYy3YqNKHlVlrXkVPAtQVeYh/kPugzhmYh2zBPZDIAMwJ7+Xvau6cU9Dlx4ARjYz0n0H3b8JesRywiaqHD6/Y8W0hRw69qupCJ5legFj4iOq9FY/EskkxrPi+fo7LPEXEB/RvUA1vRoult2GNeFoxFhq7j+R9L4toAfq2CWG6hzgOmE61hDQ3wPxGQN1EhSi/GbCDqpsP3C4D/7ALzmRvTnhwKy1LsuYYlMgo76IAe39OMNW3eVvTgcHKjRox1b0XRSKmsoHMtzVKMZxD9hjnmN2ALjurjTwiMrHiJB0kxSqfGtyk2HSm4vijnb9a9fQGEpFOdKurUQjqcdU6zWauU0o24KBo8L8Ztqa2duCh2BxnmISOYsequ011JBrtfCdN2+f3QChcKPIpeuFm2GNR5IzAiygP9jw0jk3IoUzthbwWkNCduFS6hIZIYSIfeTMaEKCvLbepWEZQv9L65nHxpP5kkBWbMPXWNjdLF66UU7kN1PFcsA+O8Ux+t88sBLCeSAlDCLtLj8DNqDEgaNTpbyNB9g2pqkJ3WeN/sXHrWFV4iPkNoZmdQJKeDy4ah0TIULnm0qNCQr2gZPb7BeDtImSNp7Q0Wn2u+rhq3KSQL8sJWD7fZL8JEBblyEv4wEtX4Iaiu/qt/8eEgsAqSR45g7USS8J3PCbWTZ2xyOJ3ES7YTjwnjvNIICpwjBOTkQAfLBKToDkP+APKIFu/5NfFnOhxwjpzRix/j8Nq4L/0+ahJOz3/Wr9hC3qWODcZlXyDjStmxSFlDd/cmgFbfVa+qrMpnipbE+JRtaWqc4C1Z7+9zpCcBcqMro9XVX2ujOvq/DX5N11kFp7s5Rir7IQTfWnXl2rJwREVCY+9X+3VMY2ZX58BeoLpyWUk9cF7TZLD7UWHUEtPZDzOchYJSiLXLCFnT9CWBtbF3y+tdtHXZCyxfU9a6G0qSjgdTn7c8S/5VvW4WirRKmN0zb/zxVSrxDw0Nq+EdfP2V1yfg21NOu7uTqTD44jTj6C1jzPkfbkgmh1MbUYLtQpimOCXuIsGhgmO7Km27waXH9qVH583XjaqT7XGENKcUK8V9pSAm94ajtIWmnH4VwJdL2jZtm+70ASRKJiFMfX8C1nnBzB3AXzdduA2R1jpHMlLylkGyer9HPaPIv03qOWQisyt472g4F85/hyNeXQg3Th/ZdBOfXNSsFxQl5T4syI0nfoFStPuDpfesDoKeq+FqSyzgwoPo+tXwyTaSZsNB3j1H+6AFjxmWI4WBV4vQhMO4Lem3yH5tHgvI/xn/xMa/uy0E9r6JEzA1V1wx1mC8ZJqWsBv1vUh9Azb/f6CC8MFOVlOFgHW9ZGFabRwGTLPcv0ljsWWpVTfmhgANnH+wSNTO1nYrbiDQVlaHjHy5+xcfLBRJ1m9Ray9/WHxx1ezG1cfV7pLgN1S0OpRAj56jRKcRD7ZXI7YJNPDNqpEuQR25RIvwMIO+UeIBd9NiDISzfx48SjmTjBE7haXQz5Iw2hHwSu5sLUQGx/PaNNGTzmqsQr3gX2uWg5mrCy2xRXsxlhK2jPU5/s3dSDvaMFWA1QnyI373T09+b+pju1XZQ+A6fLXu54SN2OYse7zdW1edMbjSu096RbEnQDcqWVw7oKijPzzynZJ0xZp1sI38UB+vC3CmDJXT75WVAY5h6ufRGAFpBbDPnkhOkNuwsfddF8zdSLZeDQBfoWbevUqBrLvOZ+U9EiR5e4av8Pu66IFc/R1rvRdqX6zFWYfue/IYJ4JhZ63KJKBgk1ADmHsbuqDezHD11ZqBg5kz7+1mqq7TwZNn82DfW5X6XLJ2plL/j2HFL5EUOp4skIr6+1g5qTqLTDsamlvqZd5GzQ9ItFKGUVhogTl2QQdpJRHIT/DWV0wPaQ5/tTal3LHvyDLOj+TKtxvxANa+v0frTFHDwqn7egBHXMM455SBf2U9uN31nxhIqfShAyp9A4v1nQtE2rmjXikVD2kxzzTX6YsMAYZxkM1hd+X4JRYqdXcgSp883o8aVx7+D5FsGw700VcmLuc8EaRbMKf1ALsuZuzducwpdKO5ke7ScWZRU7ltupaMIA6E9+f7lLLRCrLP/0eWExvI7B0QOiu9o1ys07N2+nGSFcNrSj+x63H/fKwDfoNbDpWoSvWaOYXH/BNJeMlllw8QNvDmKf2sTwQykJKsR46CSpjWpcnX2IKjtyT4STVG8qmJ/EB09ObXbUVPDv/J8PBT9uRLuwZcqw4qXzUBZ/uSpq/KxiwCtl+ONoTjDmkRFduf3Rrwg9efQKcuCiuPjrO9DsFf359uDZsqMsz5iq2yEdBArWhlrpScxvVH2ckYAzLwFbNYtUzZ3Fz7q77Ew+XHRnWuBEDCl5ATtZ8IeKm/yc1zQhLD+Hw26CDIfstLiU4JrmOCFYlcWZOTX39cam8Vc/mZHQZs5FRaEjjTs0xn8TMuv0A/dt/Dlcij4ITeLMky9biQlegUyWTC+23vTUOCOz86eXSynQfEv/L/gOk47L0CTTo8sSOv5UwPTJajZoOERxSezugDMggPAMgbwEsGcS6dP1cbnoUzR9Y8y2K5o+XDBbSv3MqlhdFVoFvbKaRM/uMWL2KtztZkEOIhD6r8cS7xraNPRKSRhIbupcvJMamjO3LSkgaX00wwkoHS0uNTDIiDu12q5xRivkhU2L0NlM7sCfQunz+XKfu6c2fKW7+Qd/falqrikavsuRkG/QyveTxCGLuxfeTe32Wp/GBo6rDm8jm6dY6vKppluVbjjkhyDLaAGR1FMP8MsWlJt6UtAlFPFLWe2KoumqB10NzKbJIa6DfWAbjsfJcfjsIbbMMJIihbGUXKh+puTH1WGsk+8pXaaxbeir1B/bqjzOkXEeZlZV3el+SJBjiPS3wxUHKe73bmNXUChE89VbwP6xeBzvyhNXR1mTvyNpCA/ab/XCz5HLp1bSTpasgLeQWAxqciamXlJG/p2VJjoQMAIObeAlL2kroTBi25OEcSVsYXIKem1QBpkUf+FE3bJ6dxd5n2WZroBPAhY3scyKzttycwSjy2zi9SLsAfZXxxL3SKPZ1o9USxhvdoyNIy3MvdbbeBJtYSO4xlx0EmnmbAFXH+wyZqY193QHpKVOmPHizb9j7gOi8PfugM9dns7ll7mUnrewsOeZqPFXpmiDXBMVKplvKss3ZQbkkUX6akLCIIHhTKHhodg8ddnpHtoLcvRVv8wgxbdOePBvojKmlTnyZCA4K6bcXkYTRBGx7v0FlIemfJHfq9Kgm7ZQXtx1UKcvRTKnCfQGMYOesAgOadLLR/ak9U6UpdovhLtAo0spHKMc0ZAO0cGjve7UWUTIN+2MGYDlX1MvGJ/kjSMkMaO7VjQBH/Ap/uOUcLH5I2zsCCvzcCzQDlaZ8+UeRi/vGsYsOovkOZiSUhqVvbZN0lLfWN4lwA8prlYNVAsRodDUjyrI6CHDL0ypFWCkFbj2vmjUb/0psX02a36f22WFx6GHxVsPxA2vbS11W106f+BB9ZkCtGtMryZLcpx7L+houbMEGBKF/Asz65fvBG1Ew+pM9SbnTw8RQZ+ilRgVUpfF6AgaZkwKkSf+D+z6XeJ8ZnfKEtIbu4fsWsF6m13TmtKC12E/wBPnlp/RVgJ7kMOY3axvB0fFHVFtpjrBBJAgDiSr6rvL5t1brIeZJQXzMKo6B7g4QQro2OmTlEBUc/sD8JwOUAV2eo6khiKmfiK0jXo+njkps0E7p0I1M4cFViLajvnn90YMiQ7puJqX/okCmhZRJOCqAJMZ/IonuTLe4mGQGF1VuzJLAsE9mzh5rrOe38aeaSLDK7RTw8OuavTS4SLdlUTvT9HmXHQW08Th2SYCp/7lXmJ2LYapokWYO/bKDqJ6pZ2vtjBOtMbaWtC7WS5hkNd9zgBZnQYxYKfP/a/KTPv2YzvCRLcuWWaLf1DdLS2fSnNu0PUl7HKMCgyA82cZgutGQFWWUA+Dx4m971RDgt4MtzQ0PLkEAe2TGTaA5nf00UyZ1ZKPG2HHc0cywhmr6mjSot9roYinw3Xj/8XDseFEvP8M6oEg3LWJoaCdRGBkXAn/SxgZlMt/vlVuMJlaBCLi4gZ+zv/UQwmJ+pG6LEyYFM/i8eQjKtJH4NwzoCjC+fyg23NZTH9jT77CNuKSu5T/8xsJ83LKiveYwd5sF7gNFH8aGpA7C0u+jFp/2YN3uv0kSQfNtvq9nk6RN+WqAAbDBJBcdFJ90+5GexPIcPuxWGq/7A/B1yexy2lQ0TIBwnPh46Blx1TNzati0pNBcS53GhJjMASvcOAGynnOw20Tgbq0ARnfwhCGnG4jdqnApi54+Ct2ty3MDHFcVitmfHrgmxVzlb57ky5mGwbbzmZ5rKmxATydmPtD5MdG+E1iIL3Rn+wL/lMgarDn1c5ZfWU2YlKuQaC5qLzzaoQMUbbH2o7gAuUIzYqe45WdmNBusHuGh8e6Aiu5NWU2hQmto1LACz5jshzAIbysX/UVEzh5kJSYWif/giQIw5NT8f846Hknv/akpmq6A+mRVX+GDCMo0nCjLWF4TUhzzfLejMmw5jD3xnturKBOBqDQz5CphX+t93kqRdqIvgkRxXO2B3dHxRBGQRo9xB8F5nCx1362y49Z0Bwk9hifw4tzjb2RNykVftYUXQgjKcPRJSwWqe8e+dwDGeIXcRnMLDLFzES/+3KRzFtOjAOEWJkbyI0HgExzkEhW1z0OI6rG832gVnJoQ2rQIwSfVbY4Wy/WGRlz1/plOAJJOx8wpanGxwAGh5l9M33unwv8NXTHI528bYozD19x9YYRQ4MTlQxRO4Jthe5LsSWLIbsBRA77IwERMGrCZVbe0M0P16WP3pnvFpF5vL/YgLjXpCljuI4TIyz1EXFEg+iRwjN3G/hUNl46xkrv2VbPBzsmrKWDYETgLpNvMBQEZi2bl7UogWF7PivBPhnDM9z7zrGh3sfg5fVq7dUkJtcLVOP8fSIajI0ZghKniEXDsSXjalclWR1DkZMOHaugaBisZyIWsumMxFVDdOjMK63Urg1MqFTOFz/HHgGSyFeGvZ901/9wIzsT2uQlOIX5Blp+kDGGmC/ZADz5xTS2m5r5x5gtcIl6vgJLpdCbuoOyeFYlSXI/PITggWJP++4CRnWNPz6HflWK8baWIDJUlWzYlvYVKodRguLWzZUoK6lrKUwy3aZ21tb0W3DLPPWeu5rnjlFSYPGIBKydTCmBOnnnIppVW689eaeIRq9oAIuUXFM/j0H5uWusbfbmgoDs7HgBDEzbdDTRBPwy7GRe5TIfljGA7sdVMCpRA+4gVOAg7K0Gu7MRa6vnC1ZOzJfQPwP4MDpw7lXa9NGHvsy7lWAEe2FrPBVtDbWWpNa0PfuZUu/6szD067lqqq6FJiXgNcLNS5ul4tnlta3T60hCH0w5rofWJe4IQdiq+KVriCyXYqP26dvlzw1ug9m5xeTckyayhfo7RYMIJiV6iADwx53cxs2Ocq8DTOuZFUC7CFqKOECoYWQycTYFxRI5yjsg2kG891168QBhKcPTW1SHzcrC/Jhq/oJOM4x2bVkRqutZHLEjBDOkmuAyeeEK2TucCv3LNVXNFwrM6SQ5o4yqq+uKfqJB7mhnnaeLajXapJK6/bqEdoljRhqc9aB2iZqCHyHwk/TADDIsjElmzX64gDyYvl0iYspx0KDW2YYzNLhxE82rrOM2pFnJ+48CuNNdH3K68cOh/GEmis01eBOb6sPo/QqBs1PXetkmf9+dVJ4B7WP8FLde2IMUWo/hbXLizjEPZZDmpKnYWtKEG8Ks9lyl/KLS87jqZDN5p2lKy+YwSo/p5RpT7QfOduGSU4Lgd6Y6RUZv+KFEwbiSOo5sbN6R6baqmltnZtzhFqV9KYMF9s2hi4c1MFAyIrnPI/TtS0gf4DIdzftBKZpaVDB5CBK8v9DvKAz0zPVHlzzeBYxBwy97Yvayp8X8Bum+Zqr9sSHh1v5sWOuE8UwjAbvlNceflOdYx3hXpwiGIj2kiDL3X+aaVLWmnwL1oIlFFPjcHj+Niy6rrRPE7yqIWCpPw89pikI0h4mT16x02cEo5oeW5uTHV+N5BiBC+fWGtuLsHt9kJ7NKu26J+tUbSxs7QsyUaFoBBk4rbtrHvBCG0WzO9FOKdaTl9t6G5s1cqnZ33U770Bg+wliL71TLUAvv5FPt9he4Q2v5/5+8y6m1IYP3rbYZtPhopBWnkIc+57DZAHnBgkE62H1zgPFsBsuDk6q/+3EIvbhgnkr5vsV1xEhvUrvWd6qogIvHJuPRSCFD4US8E9z34mAmIltuZ0KKgq/F6VR0ipbDX4CgV0bwYP1LxDO6BmUgqEdR3MKJUDDQDemsDQfATq3dpW6RjGtfDb8I3frQ0a8DlpDMKTCJ7TWGz+YGRyMoWWeZK1bIItxRF57RAg5cz5V/ecCIRVdpF2PBcSgtRoBzKX3vf2zugRcu0Jx2yPtrRW/OosTfNXAWWKUIAmO5nRFwwcCgapy0sYN3c3epNRpwaSjn1xrk1nvD9ubXjMoFrui5HKiJEF3p0kasEH/NzpCpZXT6ySrwA7fLPYZwpo0UVn3Xj7H13kaIAze39VTbpJK2qY8E6lPMydWSzjJx/kfL7SikqBKI2JarhYKe+qehZDc3gLWDrDg5BJKHb+aGv8hPwNaF9JDaVSF6bP7WK57OAuVRA+wzEX7FXxGGiGncZSSZd6trQyeiiqAIYI4/Cd4dLk7RLFkvAdXL8w2wIA46qc/YqYDSdhzGAoernAtuGFWrqpDa3PFKs01+yH/4aHQLPtCqQz/aFHHjxCdDPRJKcMZVM6FUCw4vKH8ZIHwQa0sfIvp7l63tRcrIitGzpn5MmpQlPDw81TlV7R7OPK5r6H5EKnFYMy+r2ictny4f77W10Ao1dOM+BaUAC7MzCT6QyC0O4RThQzgLuHbh2VbptNrXcyRLmOh3gyXQJHNh5y/9D5PnEehoPjLmM9Trl/TLCZ62wGq8oVNmOXWmTXRXTzkS+G9yYW35KZco2kht1ysXAXTczfDGuzVYhLRzWMaUACzbsdNHAd2w7QyMnJFNsSlrBsRF8wYtuwtFFOucaC8LUx/pVKPBR/DzJeBxIgIMLAGcfmGuyX5OxnrRUdcc8SfXgQomgBXhS9AnOBGLje5d0F1cwEhrXIr8ObxGQZq9q4uPFbY9Cr2Q3LT0ZiFRhDEY3p4OIku/GU/D0sO48Mh4JAPTLSVSzdwUdDhOAx5GbJJcyM8XE5gdReRIvACL/79JH57wycYQzX1UoElYz7i+Efa4scSgVqVskZxCNh5B/jw2ZkNQnkus64+o/Z3qqZ7vyiMmxasntYhf3scSh00EAPk5tEV06DKhOlnxzK7XZ4nLIdGc2LzsqUx74qpkj20EfZYFsuqqjkOiE6NDY20+fXr9vvrnXLDLg0vtH11KrZiy2KcJx0BCgPANJ+x6Kp6mI7y+HocH20rIregSat9WekTu56V2G0rnExcnG80o+yd7M/D+TFIUfB14vNaWnViUmBU9OaLbCINAq0vRJkqcMg561BJIjBpzxZPnV66mbVckKCODsYxO952lqmhbzPT3lEXGFErsS4oTNF6lsxG5s+4tSSEHXZxZZuyyDBVPQW+msBOWwGopmnrNbuYur/6WcaCd8taeP5FhAJRRJ26d5IcEyRpdj3JPbS/kUNVpBHkV7nPYmzMh5V9NqtqhKJgSsP/+XO2UkYczh22VWse8knk8qsaBQq4SOlDa51A7VrSzLAaok7BCXMeg5ZzqrUSTEfOTA+SKMpNNg5WSGzvWK7YSYaNOlxnGbJ11xkQ/XD6MC0+EbU8ROr8B9mYwmo1b9vVODw9R2CG2XhRYc9oMfd0hJaLfbAsK68Zxo+WfOpwEQTbL1dXbruliKgAB/xyJQXsWXIsuda6413KxDwnlmqeGJ7d9+msceS5Legjuqh+c/PZ7nvvR8fI+IdvdfNeyjstqsSiF60Px1y9RWzoXwIvzqk/qwYFB76FTonr40ch8X3hG4hQwQsyC75dI6zWnfd+1bEbo9ZYRmJGGyIowGkVIEWt4Duos3LjUDnefW8hD4Led89px60iGYOo3ehWINU91fAiZT9jlPublYJnOj4aQc04Uw3uzIzuvodsxD1W8UiUpdkPQIivVGIvbQhu9LEumZcYP6rlVt0hkEsbVIt7Ffl/LoWhI4njlK37sGyWvPs3AW0kf+9LBWDdikgUPOn91mgdGvId+JkhNAmnL5gN+t9GL44pZKVr4rZVPDCS9ekGWjWG3DXgjfyBOnD43m8jnCoPvNqaytS6G5BskpddqpcaPB8lvFPpEIcFB+KgRuykP1fZDZBnCUGvc9caTqq7q5C2Bf8BxfetLytEqPCOWTE5E2QEjjjxXahPzxPaGnfUHICC+EhVdJY3V2TVx1aOoBLNll7ubeqhlw0iJs+e6SpWipzGxKi0TltKUZC4rhaUq+vOotbrvzzta5SQpA25mAxi/3/PEPeBgmhUW8TL42BD+1gBqmn6OpalqWBAojBNQZwCqkW8u68GoyQOgMNQNbnQra1mUxRaunzHX43d195dK1/Q7Kya1u7HfWX1fXnHbIgMQwX2y3nnQrfEwzS52UuaaRme4AZt0o80s7dr6hqCaWL0zLGCPZoDuIDobiN1BjGshgX4dd2cTk8UP0DGVdacciP3vpasTH9ppfiG7WI7J0PN3j0j3+/bpi9CyhqjmZrncPmnYRJoTunKuooRjhZYx42e2sBcaDwc4b1n1Imf2CXJRqc0LL7/w9QU9eOdL+bOKKcGCuc+T4XaV66uLWZs+DrikqtF34SdPMgHRRjb/DlPm/ESv30rL5xe6Tu8QWthbsK6GCOCoXocVpantFgioNOERsW6CXqw/SJ2YuUdcJbzxlEtyGqZeqEsRbrw0jpO2YUysiZvnElrwufMtzqmOUfuDfHmTBXTbb+sLg7u2csAF+N6GvQ5J/VVsZfK8nPp3cknScPqJwQDrQ609tcOPmJuyOrhXukdhObi1ClOgQOVf/4BERpiuDVbPxXH6GHQGcfMxFJvWLVaRACa9E00qvOyy7cGekZUleW1lXdWyYeEdnH3IUKlP2mtN+52a4cnMi+PQDlOzjnuYnWPgzlGW2u1KD2DD98FfVM148aEmUbprCrlGEWT0DGf31jYvEbxYIO6BvOgiPTVb6qltWGT7FoJAX3Mo3PaMwUv107aESoOw9yf3v+tAr7SKKkLAVuxpxZ2PJI2lQqpc49dL6CMD0jOT0KAESnejEOQOS1+IZ2CvPbyVIKryYHHqMJ4/BIK5v1Dw+ntX+97gWwC0InWsXWKF7QuIKJ7iVWkSEksNL2AkS/NyK83i9IFEcJekGEvmX3Zn1tlfvTmTfC5nxHMmaUlJmGSQQ9DT8lVDAlD2teSruSOK9C/loCGdRP99MxoMMKrHqXQNnKGeTPNULYQvMABYkB4bQZBYWg++jdl+pVh1IbWUJ3XzHaR5U25bgzn/dR7SbqqoqZ0erRf9vxhi1rhwlwjDTJKavG3XlMEBRmv+vgWKvLwDQAwLa0yaJ0PFgS0dy9FkgjKHYNSMfVzIg5Ym65rIn7hySaRCA6aZWPoWotaFWNTYSsI1PfiXeNL1VexqENVIlsjD9iE6AtlvlOOIzDASzFeANwmddL16DZRUMiY3w//XQ2w7xvpsuDcgWVIUXXPqX6tmpSQz4ybhu29Pepqd/zzW/gqoTIiY60CalkxrxZgP4meVnptjBjUhuWYpYg2nDSntIHbcgmp8AOBhkMwRIDA1fvBPz8V4Q/rnOw6xcep8ilMgWMo8FIzrF5rS5m8MEqTqFARuRTD8+jlbC3SybMp98w2K+EbF0ze6RRGVJBoQkLKkl/245NEYZOsy6Vxl+DBUDu3/X5WTRZpQZx+yitgDPrNLAWq8tNgn2Cei5BeYy8sW53w+d1WbUEqxKBCfhhOuw1i3eevtuasZ9TT0PBw91dQC50fO7wxGxGBcH10FmmCWOahitFOOimXxF0yAN5A6rqjVGPPKZ3cloI2xs7Sbazv1v/bZ+Bfnj8f0pQlcd7EOG4bFPs5uYBwkAH7EIeIBQzaGi7o6numt052/oh2t6GFUUzMwUbgAdNOXlBIXHhq+DMSlcmEbPrYYFZHd8WUME60cLGCxydMvcHR3OmgvTdgiCZK6Pef4qKv1V9Fq7x0Rn5W3GbgsISYSXWhuYeMU6mnzcmq51sxn0DNQcs2CjO91XXvbuRm42caEQYYDAD2soSaUvZ6Y5y56FsYJuyYzSKo3YT0UpISD74mpiu4XIstvwNoNpDWuVBVABePeZREXXMtvTykHFkl6CWI10zRsy94yMOmOjC5uEeV5UwDulT+K1sB9tn7dALOg+Giz+jT66CVJAJAHjIBK7N2MO5/cU8X9AiFF8dicWXWYgPDprjVXrmu1cpniIG95/wuzU5jSid1LipNEnEIjFfntH+dMJzqj/SY0CbRJGlqmyYaWycjwINq6unas7JYkCeIoLeYjXmY4QZ38MQUhg0seYrqDNYykMNLaj3Wr9iL4acFxrxLk3v5s95NWRNH0ZovBiC1tTEdYKwl9PYbLBfYMG3A8wGRVaGbkhszUvoyS+pKAhTEMyQqkzMGSczeV1J/b1RN5Nql10o1ZfQ9T3QH2Y4txrwFGpciKHrq03a9Zi4v1HgVckkj6qDnI4LfuEReMUaW5tDrbuz4Nx3jEwvDrLLUpJBnwypU5IAd9fXkn3Ma4bfc/6bwXJ6YGpiQl2RTKjbcClQ0qcd4546FnxqEztUmNAqwkD0WCSEnwXz0sTowmzlmq5YVkjH+fu0mL+Qf4Va7MS1/mmMMHxt2stK6ecQ7f+sMo39yEFfw3QXWecAaf0XN8we0s0dlOSgBwk89jTK6FcEUlLtoe47tDoIksmUF+ZJfbO4IWegh6BWyqyy1cXRjVSOu03CqnRPoDe4wueBWKT4F9+qTrggwcYG+S3fkZwQxyx1y85G29dk6uSFe0UgdQuJbxG4pjJD7g/m5BfpAQIekg92Z6ZXCwbkuZh+4EqeCfxtrSo7FxClpW17ca0eg8GHBw0KIkqqZbYpAu6EcR1Ta8i645+2iRlTUUQ4F/d/qidsOhOwDlFM0mwbsMNzlrrd1Dc2Iz9Zg1qMlEx+ZAyr4P2lNpYDH1uSZrMj0WvM+thZQLqjdA+ffRxDI6Kqzfng3jTkn1swqrVvpfsnV93SJPEa4pddZ1tqJgi0x5kWqTic2UhRtCwq/hCnPTT/9olNe27S8Q5Zac3XLEl7MbKhZ9hu/S8sYrG7FmZA+0KachnozP19Ak6dLSQXdOybbhcSy4CQAUpKyL702qwupmprJFMyfPUe3haSCTtk+KhwcMMu2k/9EX7ABF0Wuq4jpKdIJ4XkKkNEml9mvcpNO/IzqBkM2pgxmb3neqPDSl7q1PvDcCHeBm5LB09QjSwErtuKnKpJ4UMzGD/UYj/dq1+R+qvHd1+ao2VaLNXQcbe8kD810G9CWLx4ukqEL1+vYGn8mdz74+Gq/9/UeFWPvo+0N5wyk54Q5ZTNUxMs/KCY0nY6xX/mbpMhjq6b9ML630izsfEjElu9BsdH8DFX1d9W2uomJy3P+VMh5XWt1g7FzbNQRexIXHNBcHT24x0Fge85tTsXbWOs7rHKbkbWrQ1vIUWMctlVYXNKewD3Zk0PHrnIJJOsz2F1l1F5oTdfmMYMlS7BQAcRdQlwYcP0ki8Lco6Rr4fSFeHPqpY/0BTfdidpFvdSkN7xmAdtT8IkA369P4B21mjLv8oa8vAaK1TNUCHXW5RCWaE67+7dOaAx61g3yWkHUosBUJzkMr+Z5qctTi/WKg4frOy2kBhtPdP2zaKVE2dfbAJCbRFpK+Jj7jsEMzi5Yma8frNzLWU4TxFMpnmNFYeimRJBU7uFb+6Q/qBOXtdjjXJQxZVDPXJ+mlPBMD9Mbbw2q9sekB1E8efzl7RXCeMgJGhIOpQ3Xm+iVOMigPxhhWTOPTaDrYXcE/rijSbSdKRVeXvObSyFN3myGjXcETrVJ5ICUdmxROR7EuvvHUjZH3a71DqMkJjpO2YyajIDc4Vfa+MvhOglwGAXnVn7lyzN+26Vg7m40oEI0IcTtbnisFnNsvYue5Ad6zistPV6JjXBgfEy6fIUwzUFZuerjXjaltBQyLi+xFpNzoK4dq1ns9iOExwbkW+RYSnksCcmT/mxtp8bIeQRgamcl76ZSpXJYMJeGPZD0oDufo7fZgzM/s/OehI1jaS6sNiARtIpkdE2cUzM9eco38bIspqIx9jM6iBNGCBtRwUWHKZv+tV5w8RCB3Ieez9JobfoIZpmVRRbpnol0wK1uMor8X8dT9mZM2kI7LDYLD1nalWKaGzyuKXhUOO3CC696FBlcyRDpIYWFriUUoGte/rw+h25YGMMndEsOuUWtIGd7FOf2oaqQ8BYblv/GG4qQM0sXTAvrzcpylNQYXLixx2fz74ZVn0h8HF67zqki4iEtZOPYHYzjFUztJ4nYH5S569iuBAwgw8nviAjboYi7eFprdggnj5uSNauJAYZ+1rCzzajJYWTEQxo+tzyKTUf4LAap7zcDsOCg0oN6963ZGwpcUfj5jJEkODk/Y6l0g798mNChBAf8lxGaXuHvCMlbthAYiJG1+rkdZHQWzz3XObuzKmHR5rsG5xyiyhlXGErmECWxYgCf68OMnQ1f+5hS0BvKBbQhXzCsDEYC5IZlr/6ps6hJwI0VEqXjw6DVpwLqVO3/gWvKXEFDLHWHRHX9aKvahho+Rx0vZxbAYlSiHNM2u3YwDc514T6VlgwDPhsyCt06ncFcG2I6gu7xs3+awP16+aU1px9W+A9i7Pw/Co7ERYRW/MkruhC0mDdA8Z3DVi/Vrr/JS8A9ZDjE+hBcSKl1a4xVwURMNf+syI10UpwOUQWOX261Elw9vZcN+STVKEqBK9tGAexFXjCmiWytoJilkfN+CyQ0QQFZviQmdnT9esoLtNN1UtSQpWMpI6HknuaRZZVA0+KoX88e5lkBP+Jr1qmxJkWm5b57RRg1UKhznMPLCwm0YonKh0olI2X5yvkHfYlgSPaOJDBZirvkc7FRI+B6uEPqeKIRs1b8a8ou6v+tUlSn1hH5B9RY5i2aWBshRIjdg1Efw3EPAlyJNbC0V70fu1ZIziupgAGXl554BPLfN9NSmBFhhzRr79+DoQpeb3/Jr9o1FS38hImUSW9w5fZ/zOTd7chOdIWON5eKd6WzJod8Pv84maZ50MersCCWDwD+9hKYKjMPLXK5/g0WRHL/w+LvQRcLd7hDKuMpaS2sN8TfrYoRIOILMNPDqlNdrZbHjRqjnQDnEyqtABCp43CdQrR/31hvFnDvS