Einsatz von dynamischer Programmierung
Wann ist es sinnvoll, dynamische Programmierung einzusetzen?
MTAwMDAw:YAHu7Dm/r39d4dIKtH0I1AEVsx4ZMlhCmy6MebUSGGI=:KSaSgVesUA0Hi3Pd:QkZzks2PJqxbNnCqeY9N3cvgkRletq5H9KVJ/VBH3dmJK8SAHV3IhlPcqcgzsbvffQDc/y5Ds3Dt0fRVR0lUim0JfXZHOvvTkKBR3DLbzAYJzJvkuCheTRUx43h382My9ZhMcKae7Sdv2AHTJq3K0OvQGEAxXO53yNapCRrLiJr+xC4U8+bskPq9oAz3thkW17+wtxSXaXSkbiZatgR1HKOuB3R7+H/24zdY5yMiduo778uMEIRYNs5oY9jx2lteSJOF1/A/JDG0JEc6+GXcqQ4NmdRgSVZ8PsuhljBVeJe60+IEcVZAEiJxtHH8v0GQr+wDVIkRErFqmr5ckojHiz5h1DJHG5EW5oyvfrJ69DTyIdy+BgPH1tO/3bh5GruAbWRHBr6Wyn46gtE=
Minimale Anzahl an Münzen
Gegeben sei ein Betrag n und eine Liste von Münzen coins. Implementieren Sie eine naive rekursive Funktion minCoins(n: int, coins: list[int]) -> int, die die minimale Anzahl an Münzen zurückgibt, die benötigt wird, um den Betrag n zu erreichen.
MTAwMDAw:U9brN+ENYspFQPyeumvNkdV095IbewaIkWJ4p9AI4hE=:p0jxULyOWOaNUpJj:fCjIbYLE0UqqCPrtn+MfBQ3K4bryWv4RthHbNaNlfRS7/k+3ulHxRsMZoN2pHvY8R2uMEXO7KUsV3NAwJ53/V5vfkAPaVIAvK2dgaHPUYEhZQ4Qs1Fc+OYUv/qOZuCvMhoX5Le1XVSAn7Os4eE1tVFPcoqSsKtlAsfrDILRhlXuMee440NVZbfCg0r0QRIzBgBBJPUFI5XUUfkLzJLBxA+ThCX/e5uRTttRQTPz4W4fxuRCMXDsJOX3es6RW6tHaOGp23b70mWt0+xLdaHoFJQ8JmsaSPgwrVjjkjpSNsmwVIKbQcGvGPgmdgEW4Ga9csURsysHSfgXr5gLR0OLFiwW9U/4CwvMt/IHxKKMJeBigCQTgMANK7SGXYMzh5uZWhGyHlUe9odT38Rx8JY0zINy3mlJHM7weVSpvBN/kFQ31aF09WNs8duYzAaCBKLSyjdfKaaAGoO6LyIAN+IWF9O3G6zJpCoWsHbv7aAGHNQhKCC+GmKVqU1Kb8JzUbexCkb0eVB7AzhJ+d4AkYCnhHXCJxTGpKCw+Jd9i2jWVL4rbFwTaJcFvxTK6b2N6Y731QsXQM0cCEPNhlPD+XVodm1Rt/GlnDck546yYuoGED6ij36YvvGH6Qbhiq0qc5h33U45s8syFOp3vsS2UaLNE8IuOpC3UNPR8z/ZZY7Fw+ePIIyK6MQWgi2VOrRz4zbNNMQQjhXwm/XLDG7KVrKEICtyFin0Q1ar1U1tGArT+V85+uq4dPGw1PwqXqbud5vo2hGplcVUMSCCgdHlQdXLFJmsOgXvVco9799kfNE9EtwC706HpgYxEtu8wzxFTtbfSAYSqbCmVxWMbNw2RDfnI6KD5rldFlmHN9Q+mXHpxJE1UVtQ61foXZTdVjIRoLxX1BVe5oFymzDxKGKxqseLtbMqH92uktuHAUHjE3S05rhnynMN+DkvHnvTaOOMLgQ9rURE5YmpE3MRbZNSysSLhFdNFPlAvLHKIZVa67tx4GKS7i/jrcpUJ6dUEt5lEWKc/1a42knnLwhHV+1qNLAz1TmSQY/FitON6faBSF3pRFVdW4QwK3cm9B9UiwdUuZJ+/HOAPwnHQ5bsDaOODrcwBubjqvbTFD7qu6vusM2B0R0wjOnxNcu1PlI3gkzVcJ9Jo+CrE329/G5NcHw2e1iBJBsGIIjabS8/Q27O/WMrc7VKSqYowGb4NMd8ruW2WrEFV317X1defe/mDiuw922ot/m3YJk7HufvyU24pofvK00bkhCXx1204R6H82u8KLXIP8IcoMmZGIDE33J3Ofb1J4nqsaDL7l7ZJWtIWftCp5JUcVTFQG5433I19t1fQSpC46GVllGebqGAyR5AR/qjc3S0426xg8OCLzh2Vt9mwgAunSdFvDGNyNDQpGd5xtNqJk6woK2cPZ23V07sk41z2Csplhf7/BYeDWyMvERgKRGxmKJ6w8sozxJK0fwNK1W/lRdAnACOOKf1GCk1mnEJos34Ac736C2aGFZff+3uvLodree0iOnkKUPjpWF/drnB3fZK2Ob9L9jJlHwuFt6TrrM2lQsWB1XRTNcY+8ca860aDT3RfXz8Td+h8sZLjI6QQ8O1tMbzs/adykV5IA5eryHIXe7DtTYFzMmZvQNhecf4b5cCEFpPR1iKOXCbLyFu0STM82xMGe0CFZZxZUl5RuLyAoOQfyaWoP/z0MvlWHlNwLqBeKK3Qb6BwB2/B54HdKo9RpRHPiSB7uWicmAy8NvEyx6NH1sJ/u+WLuzU1zHlKvCOKcneM08x7nlIM8R1TJ4jOHoIREHwN/wjYK8NBxJ7+V2TLi2eljLxQsLrpbiO1S1T64MtFf8fZSC0McVMgX0VR3FX+N96O+DaPFQ7WIrpmrT80W3z6aDhrSZAQSHmBz9u2zZhQUcTPKc4Wl5nGf67RK2SL3oD52DpucDPvBXM4EdkpmkSqshc5TrJgjXAVg/xg9CHU6kKNkVX9WPeisISGlUB3WorAdho0QZPsSZY3slxxrPxLeQM6gxUNamDdwPc8IR8TYwgr4dNFzonidJftU9GCZlTFHV0ivtNgldOGw1rnw0DbW9faFdzU94XLaTYTyqC1ci1bhXuIGeCkjZgNxjid0aM/Mu326zt0rPx3jbIfKTShxkp76vW9+2I7jRPLZ+oCmS9GmH22h7hxqi5/cPnfEXLUCsCVhxYdkuiEV5fICHhxJ2bhlv9i0WaqQ/boit06pJ4br7qx6LeknoeyVX7L8quc3zfhAoKj660J5pnrLngiL8WH8bY93bCmiXcAK7jF10TIDI1ZkGTnYSvmhrhYy+kdF2laO+Lg/a9LT9GTZyP0tnyy1UBiTn9cJZ7A9sJhojVrRnlM+CmhF3hkKaXkzi+cA+rvCKpV5fsRRnuDp1ymKZLRQf/Pf1zK9ZYl9etxiXYjA0ELrc4Xu8t/Kk6Z2EUUqCrTipvUnlXinpT/GuE/8hrdksspFfb2bgT2N8eZjipWReKUgK4qBie70RyDCYIvuarjB8L4ddYzCyXsXgwn2Il73kkmYMvLg06X/HdNCXxf3s4VZHxRA5KDhSh0uLNNpJ1ZRmuYJSRwpR69sjpeKqEi0BTdLid/SCHuM6BGj6EqLu/F/ZfaVS6OOOmZhipN0s/C7p3RZ579z0wmqTs4Pjtt7wbp1HP+AR/vW06Ls0/T5hW7hx0+qcxE9HgLdod26amNHOQe+7Qe/iUgiEbvb3RNpmKCTywFFW+omz3Wg7qJyVti4ApvepQytEySza5kv06yrLCpmq9GZ1bqrwJexNI9hN09uM0UuNsfF9eXHFPXLK9qtdUy0HNUcCys67zS6P6rcxmksdPn1TbOaNljUHQUX9xjuTCVwcVtb2Y0/K0V6p15lf1bNlnsBhB2T8on65ZItdtRmPz8n6KVDefTA+3L1FuyqEi99F4/TTaDKpDqVWMepFY1/0QXN16ZYd75JPcdkyiMJxUG9k8pLJKoAKP97z3MmzxAoAE5ekV2b0eog/2pCs4mYdP+82suikGvUtIYVaLil7nGDI/LJrOe4Y/EmHDJt/nz6rA0LorQQenlZICg9Avmc6tJnng0NytSqnoGoehttoCaDvvgamVNTNObFcOEpdYG1N2dSBRc4h9veAnZ4hWATbe4KMEHg/8p3/F5hDxw744mcrFKjtN0OfdaHrbYc7Qz3SCI1YFI8PCh2lMBCDohmXHPdBWUX0R48JldrqDvhMP8a//2Jsh7fPDqhwarKks16y+goPq254TOeXH8Mr6lCeuUUSOIEfREYWykboUWs0Iu1tqyJShLLk/P8h2sKONs4+/hOFUDSY3MC+UJZHCJVjlzGdHs66qnor2+dLioym9h4zkaJuhGzjVhmWP50MUtB7CASKEpzfN9S058Wh04oPZYCfAa8tUyl2AbruQcGajS3aAwx6y5Gr0Sp64tS38zOLpEEDGsOcxEQL9pGgMp2+eq3ziCPyqISnCTIIEkFhOpDUe7tOag/X+Cj1HRPtcafqTAJcGYJMybDwJyHTmkg+BOG2UJUl/NsfWrFaX+0KF0jNqnGpFYMKDmjH80nV3zaO9AMxHmwFqeSpMyYTrHp4DhHIUZk5d4FKaQdV4jxle/N5dXuz6Q92Rrs/DLAwTafqRuDUI6gSmkTj1xzhX01YuK7UZnIMdnN/BDvaPL3IyOg2csX9N7NLQeqL6LK4k/xiIlJHUyMsFBdmLV40wQH+eSSxtGHMsv9KX3h7MUJ1m24iiuj/o+6l98V409vopCfOljXnpHJf197V7YrNrQLD97NZKDoooX32uRP0INQXl+kNaGgnYYydhXk1wUq4cEXn6xTHKLrpMiz8K2FDS4HFsd6PEeVe/J8VwVdjAc0I9RrDRCGUNXezsA5aD/01Cw5CHk0pM7i+NPv8Sjh4Fx3VaVjE4/uizgfKQgYjk//g083EYcFfm0uOPnEa/3mEPBaiaZ0ROxAqQ/xcS/CR0WccA6d4PG8UgxPdesh1MZ0GglzuXvIrkqVlPgRvpWPp0EckK/5YOQDEYtPXot/CrCn7yxQ30D0YDxej4TjFSpDtrnFFfX127KRQvs+xWxMAx4NCZn6Z6TAxo4ze3EHtibNwl8qzjlWQTrTnclzC9fvSzX0tdcQesNRx8fUjviCq/rgfFzCrTtTFC0t+gQGsE2MeYxY8lvlfeexK7OweARiG6aJuG2H/TW3L2nZM31rwsL8BQrH8i4EY1AoWKBBpqNqMCShSmPrXjl16/A17pwye/BDfvxJMkInZnIbTqv/kWtvuS/toLz2wazQ7w+lMgeW4H80hLB9/bUpLj5RpZR9MOoU1bMrzQotfvggqEIHXDwWGBZIiJP2ibTjQZR2Un0UdWMYurShPdfy0KZDKtbgTGppxUR0wWV8vF5Ll1lXmOYKfLSz2zjc5WWMRlXEovqCK3L0vYm43nW56Qx3QuhP5u9nkveYxu7GTnh4HP6cFKPt8OzB3AbutF4+g/HdnPjtyWLV1PUErAPU1jqJOBvugDK32ZueBJ0heKkDmtc2fm9BsD+/lEcQnF0CKyDxZ4Kf8aD2Y+8ALWBmmfH6SisbS5584+QtGsVhj+TEtvPbascUDv57pblova21n3lID0wO2H2hAQKBw0bUjOG5zsPwcOoZAg+yuYZIFUtV4MwkR++U60jXL1nysRRhxynmp1sPyYKvElLv5d9l3iTDAQsa9BRxH+1qx9gIvoBLexy+Jd2xSz6RBaKXW5lQ2+7CHCDIDjucrS/2TPBLMscYdUlJ6PiyON0FFrHpSZ/l7luNwNRBjCwnSQkPZhNa8var3+ZAPZO5XniCKHFbwIyXIBK/VpUv1dA9ueZsvJjDsXIdQPF6in8vaEJpUcR/wYmD24lFTGkgSdQR7Q9+xTh7/ZLj2Yn2xQlBWseQ5apqvbStNVIB9iNrDRs9Ciu0T7EB4x1hPbYPyeHsPk5pOGWC/Gev9XeCUEemQR/HlRBtUMaV5eqgprmqnHGJkHWYUMCxLUL5sgSLa6yMjWPf4QhbrH2bfrie0+0UxuaEpiyk6jHw5G/GRPecdYMlAeyVSyRCk7SEByjKsNwNpXgUWFlI1bVj/ZSE7aIGJjP+SoFFIEpAGYLwKJGfbfgG2XvQuHnsuMQZuLjcTTqdLrocP1ccxuh+dE0PlfrgFE0197sKt/ZYGiZokh8QoePXLGIwEyBdRqSRQOsUoBY5fwMYexXZCImMSlmxDevyim4MAja+XHEoafcNqz6c0Lkhq9ES0A67Ziq272nn3n4hddgj80HaUuTluh2tGsDQ9AZ2JVoUxQVdkL61x72ztPu0/lGOSH8vzPstavSVIh2+YWDjsIqrxfEhohSj5zb5FUd6Tmmz46w2Amqd1RvVwjmwAbEbTozbdaQuhVa+OC4Tz2ca2uKsqHYTiOoPemOrx/vMz+dNgwyYNMZZkm/dQvqTwbvVbahOgh+WzsURMr1agRkzUsnlUs66OjpD58u3+WrxjCOt5RNV5USk3gvEs3y+vz8pr0bmMcq9q6vfLBAExbFap3cl4E3MsViy2yl7raAzyGt9mE+a5prN9L/rtQ9Fqodjd5fRw/bwvWJEG0txkwae3qOsxGiZ4DZuTQtNwwiQpHSf7l0PdCGEAwJTbBgZNxSVKkPgAAw4FaGOnoc3h1+I4UExeoC9z+KR67wA6OXGrWRswbXWsBc056EWEdJbia+c6P6TNYmA1iO5ACt7xSA2nvgVVYaNzBWBp8gDd/7PKMwJHE5wpcgkrxcFumXCi8DSwkjoF4EutcqfSHB/K2luZKRv6oaZJcFJxJK9kjayMRnHw7k9WaWRbeA+05OCTq18/GH7IP9xTte8LRxhLRvERNRh6aQmtpAFG2NA0i1GtB5hDUWouP5+jvYPrfejo5rqbQNxXJa3yBLUvPNCjAWvlLnf73e9ve5SdWMilLhd65Mf0O0VDP7HqO1ys7QF7ezO555SUV+gWE4XPF/80pEK5HmLJ6VeFwsMdo0I9l6Ij7BW6KZCOrOGRn8332PLQQSPuTvT4aZTNLtLKLX/bXHxFvg0nVHRVMRjFZpaWsx7P65DHh+dRzhAhqUV0BtFlm+qsjCbYbQ9WKudWfcvLcp1nTbpnLVWxrFYWoKOS8isMo/xWlXpwXLvof0EMQO9Mqc2Ghv3EYoQUXxDlqqDf4VqUjNA9Ri3NTPAkA+b1n/GIfq5++2k9wMAzyR8dPbO7WL8Ffh4ZpUi3Q39hFs7+mD/PtGAx1l5Cznxrl7GkDulyH+yuhe8OSXtQ8ivLioNDzauS1h2iktSMvBCGwWi/9VI2FWdpC5DcTdl/mIMVGbK4OVXdi7aYH0MjOuzfceQsFOT0oCMiYL8IW71ek074Q8dkjk8CSEkZFvS+Vems/VwOSCjrp7AyplSN9GoJN3dg+b461Oz49dnJJPFCTAUsj7cWeKuXEqE+1m3lmtuufvP+ulQ1Su/8WRhxESNw36g1YmYQDv6yA7dEC/z10u0qTH0YBGCSazsLpVZXgvwH6W2fvQr9I0j5EBFOFocteUUwpw2YiLzdk+d0rCIEBupR55dPm5H44FHM5+yLY1H5hQLn2zWsHKODQTnnrhKI46butt4D0Da6KTqLerE30/ZOB4ecaVj6iJ7NhIo8k0riQ9OAa9AGfy6P+X4AaDTbiCpblltjBEKNi7dxYqGPdXH1iBVtJ5zKpJPDLzsself+oi/1xolRbzKnSFa1BCIaPt/Pxu702Pyu8ch6eHYs1SiR4U28cVKFDGE5eP0QLp97Qr+LCi6Q5CQ1pBa80NhhnVe0bzCXj4s8GWyia5jpBhFcO672j8WWYMYgyI/Yr4QR1TnF2uq49d1vMk5lCMtlLF2dL/kauZJhoGDAv01dYX3otJG9f89piTwCVRUyYu2KTrzGydrnJ7jwG4Uczz0+4X6aTLDYnvYXMyaNb2n0lhqgaIKqmRvpaZR7tvYpSG62YPzkt7weeO6Qf1cSIBp5Op1LekhiFf+xvOxt68zwNAa9S/IwFyTiqRe99nNrVDcQ/GN9frcADOnkAhPyjhtbUdC9jskuBOwDzAYI7ILogI+G1vHFMIswsWpIPEagbjxhMyohQAcBjC163xz/71SXs1mX/lvaYi3h7i4RX0pueFRGGn077IF6jXKIUCe45xwUr1aCD9zidZdcKYQaL8mZ24kG4CYHKqIAFWnhbkmucLC88baRLFgr1fvogWDXOvOcnGN93r5O0E9IogbzcGcDnyC4Rk9ap9XxvMDw7yZRVyzdeLho5hDOY+YkxtmlgU2MqSjykAGgoMRBkSwC0EjCkNBvFPtgspAfGDA3LmCVR1sKQMx0l3SHiGeUSJWlG7fuwpLO/FwP1TM/4q1aMEqC2tNxr0RaZzz4X0MNnYVtQkn3Ye2sk6odIlYovwUpmiEMFGKfxF8u4NVcI4E8hC92ihv1hqF0Wn9CKEvp2v5vrm1C5HH9Pi1XJ8zlHY+Ju+UIhhXaEeJWvZ5vlTSnUqOSNcsy3FSGUe811a2w5ABfd46Lvz1nPIQIkDAeHsCg2BLm/hHB7358ApkF1L1tcN5X5ZbaBz3b5PPrfQDOWsm9/6UvomNtft4efATD3ndhzWxgaeTxiWs0jkGWU5xGqMfNB3GEjndlw//wK7IzbZe3NTB+9VhIUJwwZZGsfDhZyENdLlVZfUrB7JPVAJFWVHcpwRhbeqtLaMES60pNEAoacB0KpqQgYQUYtZ7pDx+4nv+zD1Pb8pLQ6qjwFOUMxgkbQGrlt+W1NtSvCNQQ72k2IFsTIGFjbOG7nJQ3ccVslxvdwCkmOCCQdTEIOxIIklePHcejE/dPYHwBYISHFQ2Y3pcdLsLap+/YtxWTFVFofH0yIyUsVQ5YUZEATNvaEMaGA/etDYEXbdzDSU88uoflnfNXWYOwMduya8bYCSsOetWxaDOR4K6QEfXK768axoGwGvMxq5jIR7lkbM+P3103F5YMmbKUHgf0Gqd31yh4LVD85zwMk97aCUi3LvWoMDYsJOg9zzVs907ue6sKCGFdoSHaxvroa+XCTF9mQSLMZpVj9G6S+BGbtynPFvL2IYPYTILeVpUdCGSzW8Kh/YGjXHrVrUO5hSjy0yYq9e8XatbuCyNTNWMdwluvkBTv94PUOVP8hZmWNFGA5jEv9vmwX/PLOAQOEpUNhN6PQ+neNKEhTaJuo2yoMPeCQNE1pIi62gbzaw9lgnX5EyqAyAWTaUm63PPxestuMjfUSX5WQglfAHcNCg/iYQP4ad8+HpOL1MrcPZY3QFiP6BqCdkCZszPIr3mHRXLk5CrYchwnc6vRrM228HDv4ron/F9cZeE9ZJUTb0JfLTir1BLy921k+43NCkdQL0MujKzJvIh/yWIRzjPkHgdzPRWcCigw3MErtme9ZZtn0ahd25MicYvcVJxffRUGHJFvu09BeQWcKh7dr0QJituOrPxoKF5DkwaYzum0SjKy5srcI5vC/J8BJekVkqwop7IE2dbwm2vO6jHKdh2F+aerp4SyYZ+u5wO91i9tttrFfLTtTI6irqlwieeWG4xJXNN5vrwgJ0qQihs/56jkt6soE34jSRJtb6QMPQyAm2qxFRGdXuAVDN3vruXaIsx8kOOi66bYIdON7BUaeQN14xG4uUUEwLgEdTtS8aE8z84cffj9PxKFSWjqKNxjuoZtBGl10oAt+m66YZ
Minimale Anzahl an Münzen mit dynamischer Programmierung
Stellen Sie die Funktion minCoins(n: int, coins: list[int]) -> int so um, dass sie dynamische Programmierung einsetzt.
MTAwMDAw:xKoFO2DqI9WFQA2KoP7ruDypele0cbeXkvORLaPjQhQ=:WUqGJ8/WlwcyQzH7:tzhqXEKQxVayB6l8Ubw5k9xcWxVQOmFUgzSGQMMPbtF2f91jesK8RuxqZqpSFu4SrO2H20SSBbYmv5ZH9i4RBg+41rlj5Gt0TMmVXe8fTIiRRZxZDUK+ZVkPWOfsJH0S2M0RQ2UM21B9HmYVjHw9+t9cm50hBtgUb3CpY57aof2ZhD9ZZ43aJDT34v5tADuPEXga03c/35MEX+8bPfrucfxxlT6TU4i779hbUNK1+9FJH28JdoVi8sVgYJBGz91GqsYpPFBNg5nwZEWsWVEgyN7ZTv0S1lxQJApQP3SMkBw09Y/RBuZfrkWXz6UFXScL/JNEkJsfgChzWZdRZblGafP09yNG3kTJExX0QAB9Q26Hrl2SCz2jHrI4ZTLpDSQHF1TUp46juMuVmLI8CWdcU8t8UZJ0U+FpegteIi5CarEd3dBJHtETYsyBg8X5+5c0Ue0Jien/0RW23DNyELwIcDz6/yOSg0SBHIlUKexRt1MCbsM4yEw52klgNy4oeMIC7SI1ZtU0lfUhSZPMc2Qg0+nkXiwDQL0w20Wp2kRino9lFnwyGvBvY9yIKZLHiZEiD4b7CVWDEXI6meBE0ipYEodbYZOKTZ3RiI/hkTaQenS+5nunmPLJqRbYr61IGegPUeWNngtvnRI+wnrQevsdpwmwWuzCNeN5S+wc9rtxNBYOZDcMH+FDc2brrw6IQ5RbMx272b8dHs5hnO+3gy7A8+h2GChsvwubPSQc1lAwk8ZXvDfdra582OCCCQ24T1Lla0MelzNHtrTxm2OL/6TmfTsHa/3u8cvRB1HqY0FXKbAH1LEknOrwdRw/7SWAIua7my+cLnlKBoZMlDnGEzTP7YszSijIDKjLmQzwRVWffSQ8+INGnbYae44PQlk+M8i6bySv0CR2J9bL8/8qktgbjbnJwNlSipdGB4fNSVCJmfXkIlgLExHVxu/d+oXGi0LkhQhFN0+WAoXg+0DW2mnYjXQRFkjH05Y3wc8DICWsTZvOM6FSRulBUNUuwqjeXtTSLmEjBJYd9HB2D+Q6aah9dGsls4s/Kcgw0q7goUN4LX3eiLlB++npEtTLUt3uV9tEXFnVvtTOdXFMoINqhaOaUvMopfgaYDNfCjUGJXzSIxghtrXZqU/U12i6zC0fJ8fOd59cfBt/4tIQ7KTpj+dGeCWGJj6XwtUUpzB3AbLOPWtkV7vYDNTncumTH2NrZCfZYFe6DZqMip1LiQO27zgcytZwVFyh1wL/a6W72pHeldM9IUFh80Cax/HsND2R8o0GSLfj2ZA7KM32jGhPBg54LhH+p8eI3eYdl30jufb30eAwno5Nw2KNpL8cMcIp1jJ7RMCZVoh9N/XIEcD5AEIlgSICM8dvp8TKdIkEEWKjEEx4fNlz1MoSjJI7mntO/RREGCNFvXyXwM0jXCSIpi0W/qsNAKSNToQsXj4GDA2NJS4Hr3BlvhPm6Vb2Hti3qoyA/EtHMLj8B7Ss436QBv2biYhDW41DKOcXdbOBjgc5wUZcXRcV+DRIc3BD2SbL/Ww0avVdptcZJo+l+d0Zy+T5LQHkMmOBRkvKOmVoNu2uEfyMLQoipSv+SheRrBQyWhv5ipOB/Qnv9J9kgeZ4Jbo8fGqtz4s12V28jk5VJ2p5Ose96WZKfgrQpG17ibRUJcP43NTEVkV36LuEVNxZZOwB0b4t7VpvY4pdE0+PbPLPmk9uqtlHBJGlXtnQNXpL2wh4vJeIsWVbeSmHd6vSqMPQtyfbdzB18HjrWV7LQiaVmfni2+kPdg9KrWLvP6y7DHxKswSrn0ORnuLPEudvkhaj0hy3ekXxZorYMpoXpAlAqUq3GtA+Pf7VuTLdlohe9eWQyWJIsr9vSh7hxtl9o0TMMnOzr/bFKa9tQ40nMZUZBUFegAJvmDS7H3DO7a9ViOsDE3+n2eH3QFHNNUrKC03PestK5P6YZxqV3j6qRrjsq063qgIRQY0lkq+LgwbMd27DlOkFIUFlEHMtJ794gd1sGwHRuHxKgga/Ldmnp4/mIpsEAJzbyl/yynT1Y3+2bJZVRqlOlOo1RFcmGev3EWwS+jc29eDYESZ41HRMGrsM99JbjQ/WFUAS4XFV7GW24SGl7aXlL4tyXl2OYzncYXEElF0wjuEggiFcD7bWWvdNVPTqywFPb2qQBTb7k6De57aw2vIqS4BLXZwjNFoqr2DzYf1M3oAaRAhcfYNxq3zohEZyQCigYpRPonK5lfJ1TTJmifxoR7YWIzkcnZQ7zLRv8BTZWn6P6Gv1rrHq4xMygIxfyLjJqOnrwYRFb4pQrR29IXq1MBF/TLFa9aFQA7THDpcODgtiGmBlfJtdmY/xC1bkJ61pm0LZKEaVLEiP8rz1hK5KeieKknhQF3GGPGKuW4TQbEzzXGf1MbWW7ZO3xpIBhaw7hhquBdh4XsMirJNEEee4TiGy2IOrlriclna23LWNeGNnNE5VyngGRn2M5ScKTi61jtnQNXeQJ8EKx8ZePFZ8zmqKX6IbHfHArdRZHPnpW0hwCgjNiK9FW9kX4GDjXjj5uPgmS7i8mEgkb08ZcVgplEfVCD/vOwzOEuFPcsgwPm6ZmGfyK1oO7spMcg2dCN9JD2XX9oBCSrIt+NDm7vNYNoKapDedfJ5yV4CYtLzn3/JuOiFloAamAaBTM/81DqPdmm3+sM+AEpOaxtCwCUQZlDfj+s2z+YjJIj9ib99QojKUn/ardz54IXaLz6Z56P7VgBDzFHinw8rbaiJDM7VTW5Bh22yzkCMyJmM/KdoJZI6wXV+cYQV/Kt70snJmc5j+ihi6Fil5CBSFQvHXH466HBjcFjTqKfIR824e7BJtN9XhR1Bj5skwjtPT0UNG1SAClpdgWX/yKKOfg97MPc2XIouSMDTWTrfPP4ifkdkmw0w00/zoJjrh455kmcqr9Jg5E4yIn5j3Sc+ko2hbj9LiLmbtHih0O5Kz08gC4fqy030NQ22qPZQufa45J6ddGtn82r1p6atXoFk4L6Z7OWzhHSAD/lCqgTq99ae9gSPPnkLBWC9YvRQxevAesGtq6qNh9rlkZN08ZzfXGgeX5wr9hdrtp74bihL4QhA7z9iFiAZPFdpPac8uvRLAUwJDo7Tykcvd1gUbQXqMwzu0Fte0W/9Zo21r55nZfkIuWuhb4xYmqy96weUjdoeJYoMNQI1gc3X7ULZ0KSgmNpgISdNggxj7ZWmyaDLjjQSQxzPCMHB5nbp9C9mohsfTvO/q9jZxc53kKlopF7D9jeCibKIc0ivEtWvTegO3xLMOon7Y+hUsds4Syyx2+06BiOPbpFzCPBSpCmhPLeFY4lPbFlE0qiwSY4qBtsai0Co7oX663T3p2DWxsCLROcgXAey27kBRWR2WcPXFL2I0lj01y39kOs7SGPnq084/TNOrpPa3zCqd8L/SF5r5AgZWEp1uAA98Upuyo/hcnvUnpefEQ1XgNRaOqS8lFcqvQlfBpmTPCDZKl4SQgQ7wrzoyAjhAVYYbBSJ9IVJOHNikznlfVnpZJZHvZdvDchIIxRNaN59W2zxJJ3ggER2AjD3ZylN/EPwvPG3alfSbq9M9nG9NqoxhmAsfYvsiCNnqN2CWaFqgYo1y3GFTJBrUZ1SUFjhSKb2lZxpUy+O4bW9PPo53PzseldaORMZdkWVPBxjtL2sDF1FtnoSuuY1x8GeWEOcmBeg80+Zy2p0hlhk14iUEtYT4uPPX18Z628ME0cqChUfUn2hA0Yq9kcfh32JtMQsDFXWFJOOSVkS6tNLw4JIAZA/YDi5xLhsVtbQRG78kusZ5NA2ebbqd+T1xDycJfxKYDuxouqcqfR/zb0wxLJYURFkOVb4GQ52Ur1ppI/chKh1DetiXYyodEzmb1z57KaSYRR5xOrmMybh1k3OeziHglUcl9ORcXLJ/4j12yb3dhCfZZkkWowHXWiSifzgCC6DWOODEy5HG3WfaW7coyDNfSxoTcGXNh2LTzsJw44EMzSTVqT62nwqba8629ktAK0DhRQd0DP23L/HGHd0kqp2jPgV2Cj5Lp/zra2/nGipZd8P4O658iQqQvV9wamlO3YvPa1GU+FHWnEPrafhRrA+CsFkvukzmdJtxWXfbLdepeppb30fahan6NHsgmXcdLm6UfyZwGlsWGNpF6DsVRotlRMUJWP8jPq2OnehBD2VFwM4FESd7VVTeGtZcb3iS0qpKdRPC7Hn6/u8p3VM7nnGRiPVQG36JKk4Bv6tCSXkTWzdDmYwIPOce8RTIARTypOGsz1feL5zo2kMX5LpxYhRXHynb4BaF6JMGcWjDZBus6arWoHAFr5HOkCPiemWGrwaP5zzfoytKvY7/O50jTIPTs7ONA2/ykP4DJgT39wX76Km1geQvzWwT2MEOdsm1TdiSlZbAOHWxJ+rE3UUFbOCid/aOoy6cx7Xby6/+eh4lKHkMR+gcmJmDti3BWGI3qqhbFabirJ8Tg6imOd2jCnFqBSHQIYtC1gDKJTVVzwDcklI8py9cUsc7T+NeMEVnADfe4ptlCukPKqonXfXDemL10OzpY4ZjaWSvIet1dXXTQohl1Xg1bDQvfOMdvhi+iDfaBBK9Mr9HmFgPk4TE/l2MfRclQ3l6sNyG5MSmUdHDqzjY+KcDUcCEhutxb6ng+Mn0dfWKrJAb826swvQkr8HsensLQOPt0nljOanmuPo3qh8jcl3vsc8Z6YRwQvJMDUjN3dLKOP+JTyaoxRgCa2A5pbLIFuury73G4EmWWp7sNgGMLC8jL1PJpA6sCl7stK+V+USDyrLVJ35nW+d4e0xIdY09Hgxug2Ph2A+1xYfCbcNBIy8Dh6YDf4DpDKpzZ+6Ibr+Ii2T0ju/sdXoy9Hm1n7hSsJWRWjuspxbuwZ6YdlZoIM5aUFOrqRooWq6eLLT9j2DS+BSRaq4oT3Ti1+2b2wJoTTlnWxg0yCuiKpQ0Q7hEj6N+lgg4Mw/jF6D7Ih6iSOReMHByyApskx21RV0DD7+yaMDN9Z0YpSr50e+ffoYHJ/gcXhkglJHIp8eQ44eJFSKgo+Bqj/yoLdtqoclbyw950BHiV1KbAjdmH9ZQCmCwiVMhbbZNU/u2zFpfoCglOpbZRGtnJOskMy3SxDk12GM0t4CRnC9b51UC8gVuOQ27cuczq3Eobq3uOC3S0Bbw+AwGePf1UsCAsBNuPfjQaGFkHWRTUI38n+JJu83LHfNl6NkW1NvfPwIHPKcaGE83aed7zkD6YnDUhxDfZNmjxGNL4gvN7jeTHV/VejihPQbNlHMIVo/JLbWb+Gb2BI8pGGFYFCw7E8mID72+zrbgzU215H15229PmpBkIonBoDVeq6bLLkb463/XK5AYNai6GMe4+MPxNkXrjey1UAplF6zR35FMG9hakEOtIZp398f6EuEaBWPhPPVNsmW2d7+7+VjoWkIQIJjKaEBVIPAQAdz1kh4wMrEZ6+uNuJ6Q9q9id1OuoIb6M1QfOTEG6kubezXNc7Wpic+TvH0WfNKrpo1EN0tOtFOYT8w/RLxX7VsXoaoLt+ad3u1N2naPbsWkPaiaqhTvWApL4iV6CnP2w9lboKBPd+JQ6qNaC3qzQjUdDVkTx5sqPffeV7ppnauK+yW+A5p28Xji25AJ74ZgQ0oFlLazblewWE7wL7e6I+acBZLX8MSo4GSBvlErqqxGXFIxpeFkpVQ2MHarhf3dYcZLL8B8ucAzuywdql+P7y4MpswnWGYe4G0Wlaz5SmsmPW5S2Z4KxEMn6iLp9s0fwBHqj+pzSx/PP9ihBU9zXrYqh4QYNlnp8l4DFXKYfiIpP/MsTkyodwvpPaPGhtAa2W+haaP7xBBkE9ZeB6rWqrtge7AKyKdArWdrqZRmm+VbKt1N22VGPeSBkoVa/MLHN6XsEa1OvuPhi4pXkZQk2NV93a1wjeSEUiLNEJCdJnDx/KRD7R4qx/jQEckXu72GyvCY4s4mM2QVEdzvVDLva1dxEN3ucKamNrtVoN9wC+xuJ+3oHXy+56U1CSWO4t+A6mL2u4icgAvAOSY1zUSWOvQiKGjzpya0SqEej1cFsmFptRO90Q4jle9PHvcsAqIlB2R66UalSgpoqiGtpybKSYcYNporV5g3GU//kVU4voAkdgs3rVByEYX9ImZXPtTH++ajl1phO4cKKijpWxSmkVJC8SRnjoajBhPLBhOawzLmGfRI6KM0oCvlXYHUjCMdfBnBnVZSq/u2DmDioCxQans/J4uk4bsAIsRQAb1PHNFMEzHi/wHpYjFrp5iy0f5wlNOw+PnsvMSq158FzVtZeyTUzKcXdF+5Q1QF7kvZcBFblhC4hXbqFbbcVeLhCU1CVcNXT2vFnZEqoX4LqbdGEu/P5sEusmcTcVmcZvHGtHJ/UIV87R1z/8SeXQhXlxvQnvutGU3ZSx5qH0dNIJ4HyN6v/viltlc3xeQGfp90vWaH+effU7fV5G/Ic/riXT02eEDyK0x7qkmhiTkNPICoqdVwDxe0aWdf6thChpK1nFD3E4JR1BFDltWtMV0NQhpthGBlxov8xU1jLOLvpPivG1/sxe+zdmLhsl/RXIOyGaYU0U0TdNR1yzfO5/V5Ip7b3TTQ9s4yEsOX4V8f/xnRDryDF61b/m4zr03qdXFOwI0zbrjDTwZCSdYz2TqWWLhqznG1+SlBJ7VyscS+tBuPHk4bR3h/KMrK29PgYEAz25oIPHsl3p6ZAIfssOz0z/A5FrJPGQsuzV5gUmQV/y9VEUhLjRPP3N4S/GvzYrw4dbTF06Wbc7MEr+kMQBRuKmL6i4DMuNcmD3QbbSdfnl9EP7LkRYy8QxDUgggOOPPGDoKYB6LeY7S1ybWfb+DLA3udtwd3fU+ZjyKgWMOAdvrmHRF5u38KmosWDJilMk6Wj2cyhaSJtVcFuS56zC2Dd1D4oX4zhzVjUbckT4VTAG+zUs6FdA+VJN7iTfTDHf/W+G/U1K4zitu77vzR+qvOCmVY45B5wEcFTyo1Po/LZGEO+imHlPLHdBaJNcDZyMilFLdFDwiV0UI+WhOzKjjTdWJDk4zu9QjG8phDn2hzWCYcD+XaAdX2CjSM4K2kBWJkj9SbyiXnGjuazBkXhNRU1npGM2k5TYhPYbRcEp9DuhiVx8ulJtmUE3a9VhyrtH6bNJXnvW1eaUjVge8q+dkEo2OtoQHnS0YHWGypq4TpgCbs1tK0eIjE2XbVoby8/0SISyLsRnzAyy+tYzf4njOImwb7c+gMacLF5TnNWSMmbTr1t0t/KHBBTwn5zrupW2VkjaRhnuI7dTwNbMmqVz+28yqlPm1QeG1qFlsZgzVq945aJ+RGsd3pV98cubvV1Gu33XneoJNKYj8m1Z+PXec10zVzucXrkPP4K0IamI6Lc9Zjg4cMUH8uH1z/2KTU8XqGMycx0Kcal3op4zC3uS5PPMdRQHCNfdnyHb8H3NXeTRiEL4gxWJNY+/vTCZbSw/35hM+h5R45KK8PIMTHEqtqR8TE/EDvzkTtHKiIqtAohz2h8gYMri6MDX/lMGxrT6MXBxYKt6Hc8+tQw8n3F+eEU0f8/H7ZTPC/OwspFYuGpXe2EuvWCn45PUiKuKA2DaPyvRGAvYJKdmjCGIX8f795g8ZoouE6HKVfvw8fPjWLgM1zWBftxk43DDaJ8YyIugc9HKUnZFeKuHyE59AYK84KqXYl7zHnZcL/CI97UvjDV0/KdBl8BKKc6/9hZnLxLwKSJH/Oy5x4CEfnw/HEdYyhBZlERH4QHxMJ47ezOWUgHid7AuJfjCdSlbeR5B3szwtW8AgIOTQZNjzm5c5IL+Kq+n/jrjb28iCLLuKHF+udwME8B0yU6slzw9Y8Mc4/Xxy8XaCTbwNE7tCqZBwvV12WwVCtBVbeyV7FatZ+WHbsg4rtaYobWMr52Uf+BTVVDQc4zXIKWSwjKw66WLctV0Vc9kxUC1IVG1PUVy8lu5Q6vxmxTxhlphksup9S2wYjWM4XjjFqJQ3ZQSYzhxjMz/SHlZOjcs/Ko55jDMae2U7XHhvZuUAkHeQrIj16D5jxGds/9S5bskVcuy3lPnY0cRVr+5EUTnPxGl/MV2/XAcvV4x++sqcHPuEFfGx/1SLqNaGv4QCIcO8iVL0O/Ytz3iZcrkagw/Ac8Y65xIKCqtugJ+Q89qlrsc/6XnGgOIqy1kKXh3l9ThhjOa1K0MPsGw53cqkXxb2NH+GDlUFZz9nuQKEAb3gyoZuDNH8DW2EtYl6dlRLbN7rlw4+Q1ophoEC4LwYBYIOHyb/49vfcLdGpblnwcrm59MDja1Rni+4s8FkteiMCD8IhWmzGfDRf+SMEiGwbQBlqWyKtzdM/Dzpa1Q2en+NPrdnJX+y0+HK679Hq0WwrRfukSOoCywvL1h7UfsvPd+h1Q3N4pGlOCXjxBG6183fMHWm3iEnvGvTrkXDG73ATlLpPn8GkUY2Wazf9bY75JQrNmwr2gFBj2CBonnRZRBfWfB1gWqiFflJPqmjcgljxO5IMzgdjxkEQWgaBABbmR4fLpx8AjPbaBG4O2auBVoaYoiQ1YzVeibal9fD6hCt5gj/kv3M45ZMWffJNVvOq47oGqIPTXAjRKIl663o5GgxItbepNd6kGzE9tGj3VjNyNTYcy7fl5QsGDRjmiNt/cJKDouvUQwTjLGHrW3qkUns3ARK8A4whv/5tD5Q5a4hGkPGMvwxQADVdEa8uy4okSOBFRuHuFMk2s6rZ0bmXyIpKaAqWmRAvjo0y2bqND6Dw8RWy5KEAJYcxauco4D4XKqqcr6TddJfIoSIJLstNsJRE7FOh2HnVkdJUuHCv4j1W+a5kt5YDvce2TcXxpOT5p+9HUEquk0HdjEShRHwwT6Nfs5wK43Zq9qTkFidDN9gz6dbdJo0D97nVx/UuspPUswo9pJFR2Y8oSu7tBz4ijQg8aN5HK6EjahYChsoWFd5zud+LQbQTiIt0qTt6cPcqgkfsHu+Yf6+fQEaxvphj6sEzXrfMGXuU8sq7oZFrUI8mYcAVfpx6Bhp4L7OMw/a5Wkg3u3Lg2pAObLzi/42PFx9+ml6WrAIpwyGQMyFF6SoJAgLFT0hHCNlun/UAoOkG+oybp9naQ1XNNZqj0TyhjGzp/o7YvjTonUDnlFnBnQ+iDQhlTCQ5m7sXfJR4Iu8V6zPPrluiSWnpZ8QQpoa/xCpRIabbmdqWqbC1I1AUu2LJIWZQqteE4IvyYcEkByY8YNbXHCbaxXXHhG7+EgL12QZ0lybGh5rhbek+P2isDor7u8LiYApVyhXXb7DTrnLXRWtJKiFnEHDNKzc20j/s0nhApF6N/nsBSEfHVENSHoJfbkaKFkSfF53+3XhAQdQ13AgyodXVfO8a9Jl0otaqX6tmukVK4LAL//NoiL9bJixNe2LEUPTTQjVwKkijnYym+x9Znk32HNxRPwZn50A1LixdB6Z2bmuQDwB4j0gK+O9n88iKD7OdrGLaID935gFJyTvppvTax85QUp00Lx4Nn5oIF26cK5NXTcTQG2SXCnL0LyxVoeYQVBo/SNCXLP/zB9M9NXQIIGJ52geZ8Cz1Rgf6BrayNkitYuHwibFfjPT8D0T5SvL+l829XQcsQdMNaq+MH/TdDlVTL70bbunf/yJomvQ/CvcSmvDSUHkJ3MlLPhaIj467OAQyr+HyauFzddb1RngKe+OjAPGG3vxEtHglU6pBFJtD/RVvLzZeOFeKUbTpa6rLX1URb6Mj3R8hxj4bviT6qvGB5gU61S1L3PyG3/pyE2t/0xMw++XOQQRMiPXhZrECc4bx8/KHxRzB8p0fp51ZcZX765B+t7TFaF/FOmfRCceljGBlRRh8tAKVd3Odq2agie7+SvzI6OdbMOznouxJPkNMH2OcvDA5ubkL7shNA9ftvLuEcpEOK3wh4hj+jRUYNv7fDun5GOSopHNqeQ70pFwvJEuFKbc+VUjB5Ax0m8I7qyqAhU+bQGQ3EmkV1FAyVjoldpkT9SLVuLFVzzrjzUhAnxNEYY6KY4k0cP6cWjvEEcNMJvGCbykXYj37DOgHzSWSKpdQ6k8yUH1uVGIQuDPmp/FB0cp9362ddlGDuY1TyJZYP0zLm8MYhy7XLVIfUb3psFOxWjBQCL33fJ7gPYz0vuUenN/88wKJft79iVNbdLKPwjm2gFmFrQ8/ayy8u5pK0rBmggt/Dnn1PE8bX78Oq8JHd91/LeT9sETzf6xMHy9w/iX4Sbj2HnMIzdpMU48A1nH2X1coEbWcBWTvr9IGQtqet4QaDHcEZuLsDvlOJ1sNKPBp6DFdO0xDTMZ3A3skVLd/ooN5s0A+QYswH46FtwxTZwLDGT4B5wo+fahpjQe20x5ug/9MQus+Q0Lp4i/kDfEFYu7YSDVFZ70IAf4Ky1ebfeondNyxhlmQw7cLhb7qsVqS31schI+IBJj8H4m8LIkAbhWBVUV1kRjkuRl7F7sBYqXhwLsqIO42N4+uuEsHM05odIGQvJmdeTc1JYl4jcwV0hs3oKCeNsiQAzzjYz1Sa4XgmRtVojsQ9jM9np57mdZdpW/8H/vFjCNtNiRZD5RGCzZ46apwULx8ZcbG+YMmNESwBpMS9ZhnaPNmKX8MD9m9l0M1ozcFexiheqW6hzRwrUco+QMfmjzKDZ94UWgtxkNVAWcTTWdHVnDPAws2DPPdAE9uYiL8gNBkUQoJRVjcdviGt60ywsFrebQ2g69l+vimTCj6GJdibJ2qcmj6vVnBlavPqe9ctas2x+DnedO/5rI+XszBexsQDlewCo1t9AEqhxLcLrOC2ISaSHxAl83MF/B4VC9aYQckim1sNfzFNGXVIuWW1jeSbsTXT5qKzH7ZrZUuNBNqg+DXwjFGFLCoeWaCQnzqB5/SKUJwIW6JTZbq5EqHWsWZNdJxaGmcIvJFuzZw7AagZcdIArGlkZw+hwv4s+AUC/gK/VoYOn4i5J8QkIU9oIlwm5lAjrI32dJuE9/bRh9Rf1aEkfzVJ/BMLy3ma+8gY2vpQTOrZZR/vEbkZJybMfBJASPhTctdfR70SBku6EK0XLtgMd1fyaFVMM9kqNJTRW0NYlik7Yc9zDayU62LnPIjs9xUgrCubvdiX0V0iZqmRkthXjD86AfEV/JxV/KUVz6fjOh5Vi7m0E3+YnMT3z4S+CywDpV+7m3YLdgDoJAF6ztVc0E7UvlCgJ/IxW5jB9ogNtdZ0TiXDH2Czta0zl36Ho2/6JJu4KzpYIiJBJaesCxvVFE+Gm948wVQOEEtw9iKHhUCsTprvrHxlo3HKcMSIKGJPuh7CzvhmIhDChPy+t8Wr5GMBWSBR4j1qRKAkLVbb9lhQc/Z7FHMX/z72P6eo0A3+c29GYo/qt78vX3dJjCiX83MZNb7oHr0VpbtQBu5W5wDh0P3nr/8JSBDKgJB76UkBq8BiDKw+Re5IEKF6vo0YescUcOoLTfTCoMpUGvLK4wbVhTs5+gUKQOHXLS12ZohJtOfNZN+g+iTnqAlUjQqW52PzOd4cHffiJxm3JB7xYnSTATLEfp5asWiERcJ6J2KNBUFCWIf1Kp4MfVGw2yKXOlOxFR+x7CFI6jrEfEPDNkONJYzXi3NL9mZcfF/Cr6CMVSTqs+mMEOxe3+g+XLgn+ptLQZ3du4W7XHjiv/NQYq0vUR3yRj1fCwUJQcLnbSaAnk3Zr+6e7PCRBvAAMA5wkfL41mU3mGRv0P2PH/bfrWqaBe66ZZQFl/myEpKp1r1891nvEDPHnKxi4HSF+r2nggXHr1LBjrcpJ07uaH0hFCNeWXzUIWdosOp3hgX1JgvxrBKAoU3p3CWb9kNt4SLOPwiQn95ccuWS3hqgo8BT77nrECqMG+LP+2cz87Ll4VZqw+gRSDVNLoT+Gb5L9jF0ycdSeck/vzqxtqYzPWTl+meesyHOtrgVmWuCFmNuV/QDGD75HeS/S8hgE2UioftBbUEqRkvEVDpUW/KyCZDQG3smg4+UubuNW3FqSkbhsSXAcFPdY+SbsR8+RiDJffH0bHhgfrnCY1wHV4BHszl7bMgRTARptkD3vaH6buDSkweQNU7gHt31nG6XMKph9KdYqLRWeXBN/wa4WBygeHZwI8LY+GIZuGhYQImAFYSLwIJr3dhs6S6cfHVDlIY8MbJvzvU4BU52Y4YWAmlClGlUDOtZArWUD3nMnp1drG0XdStombWLwKnad69hsTOoIGI0eDaTnr8JFX00SoqJnM7bbMBYJLOIUdZDZBJ9eHiB2csgooRfzdqgFwdmKBBJaEwyQ0LijOXDzUT7Gw0IJgEhNjremTb0+B1SM6ONwClzcgzpvmVANjulK+BbWk7kIq9WOjjtL5tuzmQrzT0jK4Nrp38lyJMNoYa2CF/QtQ9KxfMMAexsixwnZA8rcTjIyMPLhlNsIdNfJIW4TdXHit0fV18484uP+hU1rh5EPC/l06U+HHiPDHHibTE4EYbn6P87EAgtg76G/mXhcUoEoqmbB4CXyIdBGWxz25873SeP5FiO25RjtIIcF4nyI42h7UEv7n7gMXP+4mZciA6qeXz+Y38bJtrfkSPHCOXbiAkM0bt++/CBz0b5hg9grZFjk4tftsfdDo+kN+CrgyVjvqj/znij3ide5HTnBJHMiI+77b98ZiB37ri57HX4RR19iuxBQgq5VGWolBk9QJvY1YqJwQZqC1lhLPGLShaYH68LvALxwjJbd0Qc/McCyz/QUpVlVUg9DkbpHyXx186djnpaxzdZMpFyteZOC7OQsLukKvT0FsqkahdPGotkewEAyMErNiAaT5VyB4WjOOJahFqxB5jw3RPL9m9eXoV+DTfI56QTptKEEESHvVfzkH9F+mWUwDEYiZeQfnchzFLDovZZoJIAmsYItHE4gjvv42k3j/rJ/CQPYVWi0PnqvBKIRcHfuL3n/Fisw9FvRUziFjuDN4OG77DPmj7T/j38hc1zqnh1jgrOrePA/MkSVBjgDDDE76QEDmSwo83UFNVtZLw5aYtyhqhgHDZl+F7kfjUyo5rUoz7llwICzC4mpI/d3OfCdOZSZ5mfww3XZT+p/KLYSHJ98lT6lqHW983TC27u2pTf3RwzuT02UE8DFWanhlarxsiPUkghtCpSPfmka8RLf9MVntPoBOpEoGkwBIvyGS4aVqKanocz16sr5oPwcYJbb1lyeFNtTAXNAdBLJfQoD4ybEzzGauAkPugrQwJE0WxrBVSrTCqhIJwS9kNLswH2KVENd98EH17vkON14DC7iU7gpXGWeBORy+YjDHJgfDJY0Ev/tTwULZK+UaLbQDl38WNv1DwaEiRvPh9DodcUjConyHqV4IVGXQbYgactefoaFYQgWoQ6GrtTdBb1UDk1nIKs5if7ShZgOHrQ5wD12YPetMWPLe7oLosN+2DQFV+xdP3UMyNdBucPUtk77xmeHDl5uUFM6y1dhj2wTZTtACYx48tz7a2Yq5QHO/YEcJlUSqLFFKfKavDsmP+WrfKZh4hnijMeqzRbbam1VWre4agZqaDK6BKUGIOhydvaQiKRIywjYjDRxxOzCHh1HesGiYhi50knruHZ2CehTcwvH2bV2WsZrKY0aSaUcw+VqSfsp0iuAAVavIN1h9YUu2LmV/UwRcxMDObC17PxPFUJN/hhYTVwTTiuLyVZBximw/EieZjEhgronPa8OrBHBaeDF74Pq+5pgYXzqN8ixT83UH+nw91Bd6F9iqQpg6MJW2q3iCkx+7w7cPvINeJR26WHGn2/iaAsnZgq1NospBg14KuW/Cj4zHeLw2WimEN1EdX8TOmhS5GgGWFnIABDSsdErHGmrfGgPZI4NgyYigrqi27ltYNlYfFM7deTTTyNMOWnGVW5OISp8lyt65sjCJJOhk/JYuN81EoJfQ5KZ/qgIT8gNCRoingyOF5PN6R0va1NESO4Oj0lkGYGXo9r+rXo0DZ3Tsw7jydPaNj6A0rzpX1bP2ORyODwT/jtOpJ1XaJbtAyH0SsKFRVyNtv+nO+l1fJ5EnHWRhwYMHIpstqC0L76wK3RWd9bqRlCgBpaYFXr7PGNiQTLOTIf2wEcb8q0AK3ApaTZol7W0MZ3kuB9U/d4R2edBNiVJL5xB1c9sS022QZx0vC3ySyOgCQxytKod+ArgpE6UINvKR1CNcVMJFnRGCPKppPsQl4xxRB7e0DslamWHZo4uOpmUP/9u3aMCjbCzz5xhb3I8R60sMtrHcDZ7T6KpOb+TCt4kYVgOOzH2aNkN31+RZCaGl72yH/ML4ufhYiIkiAIZOXRjj19EYoJFDvDDotZ5CummIqyP6+/YDOCN3gAhhtS7SLGCUoo3bIOiyp4AAdj44T7n856eTnR/nJXprawJWUWITeIdjBDzbgtqnzYr0xlAakY8kFQ3MsUVFP3W3aixSqQJuOzULaBeBiEAJ0DyuzGnFYq1EdfS25InXqyXejsmYtPrt/TLrQSR5OWeaexfRTBbkSFkV4c+NFHq1FmFBBnU8e+PsVo/TogMJoRk5qY+J/j0g0hT8IatjmgxpmHxK4/SM9w8Sbk7RZRFqIO+iYaJaJaQQNDnrYVtbQ5qYL7O5DpE5tigfGzghLDYQOsgdkjq4Yw9MEan6GcmA3xYfDOqVuxVCOQ6NHNfSkzIlT3coDMnCu41NN+9HefdhkbjIooKFYQ8vVzHVwGHzqKjLiWd4zSxvWNgMSCprlfU1h9v8HfhlprGg3/oqfMenc/Rx66EENoeIg22EkEtXwTNPm2TM+uM+c7Ariex3ZzZBdo0T429WGlxe42QX7GC6nycvp8CY+JnQy1x+3r03o2aQ/E3rgFPdoQMgDR/MztiyWueTpVgazRFqHzul9B/BF100KGkE2Je/hFSjf107E3+LpWhJMONsPlflwAL9isAAvKjeMCoeOluHmXimmuZit1Obn7WJcCyCwhmcrGJL4TSHY5Jm8UKIOROSQOToEXNeg5mANSEBvSs0b9BwFtr/W7SAFkplJ7yZTyWmXI3HjSci/6woTr6ffeOn6raZm2BX1HYCdmhLrV1ld+5WK3aWzquAd5/l3W8pbDtZiH+mFKitkq5gCI0G7prnAUuYSdCQKvxAmH7Sa+jMvYFgpWSXIupVnbcgWKMlVSkB0S5p/m075GxvdZk8w/k+qIx9RgVnqaCe2ugGcqruOjrdMuHJP34vu1s90BzySyOcROySSxjtXPS1oQ+ZS9q6K9nJ+ULkYHYHDlTJcMPH+5DtuRs3Yxd0WK5aUte1cM++TeoDArg3hPZ1DFmBKdaHyixGQLK78pWA3+czeEOa+mD9NJTKt5AYJhYA3F5dcji2Qt5i9T9Jk9yJRcNg3Z6PrGsHF2EQIuRjih38KLu01dPsNYiASIsGfW5xTOHMoBzHlFBrgYKhHXP4GVwQnYmNVQFdrRB5BTux0a79bWuv51bq8L5vGniafMHoNE+WVL/hIv2SI/MK9JB9/RepItplHS2ZF/E0/BgxkFaRd+pCFFOBYr66J0ffXjTdplEDQbJ7MHSKTOdwzSt33GpUWVavh8+v9J32Y7AQ1u7KJ630TyzPearz6nn85riimL/rRIQV2C9ItYGjbc7fQrjHVZM84+9MC+kRQ/57s0j+9eV4EFnRVBiCd3Zga2iaJJT2ccUT+9pwH4NgakksZQj0xJyA5EdbnH+uUwrtkWZU15UxZHNKFPL39RiDxd8dbfl6zN/N8pQicSxj/svod3H9Pq3tURqWegJIB6YZ9gtTbLAZQNa2wh1O51DKxsdWK+gXa35wSBGcBfN30ZwZYVAuXadcu258MVeXmTxoPPD3S10XrmG7DG5OSupL6mMtLvVIEgwWflx57u38xJGKWfB6NxEp0dnR8tpkiz1gpSqAU/vvxi2lC4UwkIxyjEJcOmEjf6rP/BpDkx8twO9LRjol5NrFWKnMB6FDz3TYoun+g3+/vegVi+BWY8hsLsJFIfJVmlRGyZVTEICtIldq+732zTRo81PN6+VwHsimT1TE+gCofyRvPw6dPADWzyDWYywXAIx7vf+J0rPy9a7lAJZx6BX+L3dGazZpbwx/YfQXKXQ7w1XVMeS/J1DBtjZ2TGyfXQyMPaNr2x9bqfFXCww9L4GyKr2aPd27gApBuI+TrJOG4Pzs1BlSJPHqKTQXlxDy/E5rl7gSas/ccbZ3tScSXYIGX9zI8nUGpCLu9uNiaiDsklZLxhYr/YIqCqTxVASHssIZkDB3EiS3eW81DUjSrgYWFkk8+h3HpuV8cHc9+3ZsaBYPl2++8eff1FBvEkP8svb5++7Bzy5oeYwOy+SZK0l2nH0IbbLKy8j8iyB5lo0Hbu8iwnhkM/ZUn4ZB1mnPuUqN8vRmZCQ9rqR72YcgtjMXAir2EKqhitnlUnDJ/mS41jjp6w94ZuCQWrbWDSPhYfdEA1DGoSAbygSXCmaEtTVv7BSz6i2STp5awWCBhKdZOSjmKmPWQdONPEJtq28b7QHs4x4UjYH5wfvw2PKM9TbOputWSXAo1RR8kxtjSBQYgL9jx/kZ3D9hKG8lGQewZsCiExBtg9M6utBOVqKyFfM36Cb/8Jg0YARSmnTsvdP62VHElwKWYaFyT5UL6P+MwFMorlcclKd30rO9ylgSZAtxFNdJQkOVTnrcXKI1bsSg34ju6PePDeypF2zV/vGrcMIeYRwfrwnU48rVesJdQv62nbJse4sfMmhA3cKKIY86+r33HKN93SXHH4UlbT4Pp9V1CvH6HbuHG/l3UKaxHztNzonkxt+LehJWKjEEFmGX4ovIRZ9qbVI1W06xwryhsZHD8hf2Kw60VNn7nWd6rZ8UejhaY4ROqvCFZO9cub3k0CvwrPv0SOMJH3+bhExs709IHfx8n6m4Iq5DpNj1Gma65kjNn6WIoEIM9tWf8LVQSGty4Af9gGE/dXX84dHhO4Zsew7dkC0a84UtLsnJBLFJaXqJAyJGAU+RDG2AaFyIobguerjhmbAeSC6IqpctNsLpiJ08Fsb3yJz3b40G6MIJwvupo/+sSiUJN0mmXIgCpgoN/AAHTB435Nz7U6hyFpKwyGXjbXrug0B7y3ZOjrN9JwygMm0/IpaS+AqHtjqABYnyUtCNc/lewrM6C2pUeHKNo4P0vUNJyGOnZQlJAoguWNs061gIJxb+lQQnMpMji0B47NuNg7Y5QBBBTuhNVDbf1uF7FgZK2tUe00zrkO/lGmfztP6DKOHMqalDol1PqFtiMktkKa3fsDo4svGFn94WGA/+YX8qPGFItrfJbcoPO5az9IHevNeYs9vm8Gr3GITa+PyPL0nqPoREb33EUDQkx47+I9dN2vpDPhgvQezzL4nftj4+YO2ijRWxkWUrf6m+o4ewWGdik5hkHnJG0oLU1teiHOp35t6ZejE3mCkqNH4uVVn5FtVyaAOuHqSQsDs9jsi5tkXUYGZIorqCEeKtyvSt2mqBhbqyEknAnZhb6dwFjfhst6/mtPXjhHChOR3eE89JuY5gFQ1RkKF26ZuCzq2zvr/sm53tKZ1Yls7MMGul174v2LzMA9TyIfv6EmaFMM9ANVQS5c5K6SzWrra4WvAFpdOFDY1M8cBL09RoDagkirA6+HhwHxcitwo95bx8zfu8es5fy48DFTO0w3eB7tdkZ5JYbk4AZ/p6epBiAaVon8O9pcnypDvwwbfGv6k+oghi8Frp+KJ/RAaaWa4ZcCDCvaY5tzLiDp3z4EIjyUvh5KTeRXCEJ4JECiAVrrYvrsJyllWxlGGaW9zAA23KbCCtqYnfzRHqcddZkxY+RpT8wP0J1vVe8eTOWCyIn4Bktp44jZwgUwzoZukzjC00OYIhx